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1. Определение плотности пластилина 
 

Задание. Определите плотность пластилина и массу деревянной линейки. Плот-

ность воды принять равной  3
3100,1
м
кг

⋅=ρ . 

 
Оборудование: деревянная линейка, пластилин, мерный стакан с водой, нитки, 

лезвие бритвы. 
Выполнение работы 

Гидростатическое взвешивание.  
Так как необходимо определить две неизвестные величины, то следует провести, 

по крайней мере, два независимых измерения.  
 
Один из вариантов решения.  

 Прикрепим с помощью нитки кусок пластилина к одному из концов линейки и 
уравновесим ее на остром упоре. Обозначим длины плеч линейки l l1 2, . Опустим этот 
же кусок пластилина в мерный стакан с водой и опять уравновесим линейку. Обозна-
чим длины плеч в этом эксперименте l l3 4, . Запишем условия равновесия линейки в 
обоих случаях: 
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где 0,ρρ - плотности пластилина и воды, соответственно, m - масса линейки, l0  - ее 
длина. Из системы уравнений (1) следуют формулы, пригодные для расчета требуемых 
величин: 
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При выводе этих формул учтено, что 043021 ; llllll =+=+ .  
 
При расчете погрешностей следует принять во внимание, что основной вклад 

вносят приборные погрешности измерения длин плеч ∆l см≈ 0 05, . Оценку погрешно-
сти можно провести по методу границ, расчетные формулы которого в данном случае 
имеют вид: 
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б)  для определения m - 
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2. Определение плотности неизвестного материала. 
 
Задание. Определить плотность материала, находящегося в одном из двух кус-

ков пластилина, если известно, что масса пластилина  в обоих кусках одинакова. 
Оборудование. Два куска пластилина; сосуд с жидкостью, плотность которой 

известна; весы с разновесом, нитка. 
Примечание: извлекать неизвестный материал из пластилина нельзя. 
 

Выполнение работы 
 
1. Взвешиваем в воздухе пластилин - Р1. 

 2. Взвешиваем  его же в воде - Р2 

Р2 = Р1 - ρgVп  ⇒ g
PPV 21

• ρ
−

= . 

 3. Взвешиваем пластилин с добавкой в воздухе – Р1
1  и в воде - Р2

1. Отсюда оп-
ределяем объем куска пластилина с добавкой. 
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где Vпх - объем пластилина с добавкой, Vх - объем неизвестного тела. 
 В таком случае плотность неизвестного материала определится, как: 
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 Погрешности оцениваем методом границ.  
 
  
Примечание: мел нельзя извлекать из пластилина так, как в воде он намокает и рас-
плывается. 
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3. Измерение веса воздуха 
 

 Изогнутая спица на остром твердом упоре 
в совокупности с вертикальной линейкой может 
служить в качестве чувствительных весов. 

Изготовьте такие весы. Их удобно монти-
ровать на краю крышки стола с помощью пласти-
лина.  Используйте в качестве противовеса пласти-
лин. Добейтесь того, чтобы в свободном состоянии 
(без груза) плечо-стрелка располагалась горизон-
тально. 
  В качестве гири используйте небольшую 
гайку. (Измерьте ее массу) 
   

 Задание 1. Измерьте зависимость “пока-
заний” весов (отклонения от положения равновесия 

без нагрузки) от положения гайки x  при нескольких значениях угла изгиба спицы. Постройте графики 
полученных зависимостей. Объясните полученные результаты. 
 
  Задание 1.  Измерьте вес воздуха в накачанном вами воздушном шарике. Определите избыточ-
ное давление внутри шарика. 
 

Оборудование. Спица, гайка, пластилин, жестяная скоба, линейка, шарик резиновый, нитки, 
миллиметровая бумага, термометр. 
 

Выполнение работы. 
 

1. Рассмотрим условия равновесия  весов. 
В начальном положении равенство моментов сил, действующих на разные плечи весов, имеет вид 

 
m l m l1 1 2 2cosα = ,   (1) 

 
где m m1 2,  - массы плеч (с уравновешивающим грузом), l l1 2,  - расстояния от упора до центров масс 
плеч. 
 

После того, как на горизонтальное плечо повесили гайку, 
массы m0  на расстоянии l  от упора, это плечо наклонится 
на некоторый угол β , который можно найти из условия 
равновесия в этом положении  
 

m l m l ml1 1 2 2cos( ) cos cosα β β β− = + .    
(2) 

 
 
 

 
Из этих уравнений находим 

α
β

sinlm
lmtg

11

0=  .               (3) 

 
Таким образом, тангенс угла наклона прямо 

пропорционален моменту приложенной силы, что делает 
данные весы линейными. Следовательно, в качестве 

показаний весов удобно использовать x - расстояние, которое “отсекает” стрелка на линейке. Если рас-
стояние от упора до линейки обозначить L , то показания весов определяются формулой: 
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x
L

m l
m l Km l= =

1 1
0 0sinα , 

где K - коэффициент пропорциональности 
(чувствительность), зависящий от геомет-
рических свойств весов. 
 

Результаты измерений зависимости 
x l( )  при двух разных значениях угла α  

(α α1 220 10≈ ≈o o, ) представлены в 
таблице и на графике. 
 

l(см) 1 2 3 4 5 6 7 8 9 10 
x(мм) 3 10 16 25 29 33 40 45 50 55 
x(мм) 10 20 30 40 45 55 - - - - 

 
 

Как видно, из графиков, прямая пропорциональная зависимость x l( )  подтверждается экспери-
ментально, причем, с уменьшением угла α  чувствительность весов повышается. 
 
 

2.  Для измерения веса воздуха в воздушном шарике закрепим не надутый шарик с помощью 
нитки на конце плеча рычага и с помощью пластилина уравновесим весы (установим измерительное 
плечо горизонтально). После этого проградуируем весы с помощью гайки, массу которой определим 
взвешиванием. Результаты измерений и градуировочный график приведены в таблице и на рисунке. 

 
 

 
l,(см) 1 2 3 4 5 6 7 8 9 10 
x,(мм) 7 14 22 31 39 48 57 66 75 87 

 
 
 

Надуем воздушный шарик и прикрепим его на прежнее место, предварительно сняв гайку. Сни-
мем показания наших весов x0 . По градуировочному графику найдем значение l0  - гайка массы m0 , 
находящаяся на расстоянии l0  создает такой же момент силы, как вес воздуха в шарике на расстоянии l1  
(расстояние от упора до точки подвеса шарика) 

m l g l f0 0 1= , 

где f mg= ~ - вес воздуха внутри шарика, ~m  -“кажущаяся” масса воздуха. 
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Дело в том, что вес воздуха будет равен разности между силой тяжести, действующей на шарик и си-
лой Архимеда. 

Таким образом, f m
l g
l

= 0
0

1
. 

По нашим измерениям,  
m кг0

4500 10 10= ± ⋅ −( ) ;   l см0 4 5 0 2= ±( , , ) ;    l см1 20 0 0 2= ±( , , ) ;  

тогда f H= ± ⋅ −( , , )105 0 16 10 3 , что соответствует ~ ,m г≈ 0 1  с относительной погрешностью 15%. 
Для вычисления избыточного давления воспользуемся законом Архимеда и уравнением состоя-

ния идеального газа, комбинация которых приводит к соотношению ∆P
mRT

V
=

~

µ
. В наших измерениях 

воздушный шарик имел почти правильную сферическую форму, его диаметр ;)214( смd ±=  Расчет 
избыточного давления привел к результату 

∆P Па= ± ⋅( , , )2 0 0 5 104
 

 
Дополнение. Таким образом, предложенные весы оказались достаточно чувствительным изме-

рительным прибором, погрешность определения объема оказалась сравнимой с погрешностью измере-
ния массы воздуха. Очередной раз отметим, что наиболее предпочтительной и в данном случае являет-
ся обработка методом наименьших квадратов. Для представленного градуировочного графика пара-
метры прямой K = ±8 8 0 5, , , b = − ±4 3 .  (В единицах, использованных на графике). Приведенные 
здесь результаты и их погрешности рассчитаны с использованием этого метода. 
 
 

4. Трубка на наклонной плоскости 
 
Задание 1. Исследовать зависимость времени скатывания металлической трубки 

по наклонной плоскости от угла наклона плоскости к горизонту.  
Задание 2. По полученным данным определить ускорение свободного падения 

 
Оборудование. Трибометр, металлическая трубка длиной 4 см (выпилена из 

алюминиевой лыжной палки), секундомер, линейка, кусок картона, деревянный бру-
сок. 

 
Содержание работы. 

 При скатывании трубки выполняется закон сохранения энергии. 

mgh
mv mv

F Sc= + +
2 2

2 2  (1).  

Второе слагаемое mv 2

2
 появляется, так как трубка участвует не только в посту-

пательном, но и во вращательном движении. Таким образом: 
mgh mv F Sc= +2   (2), 

где  v - конечная скорость трубки при скатывании по наклонной плоскости; Fс - сила 
сопротивления движению при скатывании трубки (Так как углы возвышения на-
клонной плоскости малы, то силу сопротивления можно читать постоянной при раз-
личных углах.); S - длина наклонной плоскости, по которой скатывается трубка. 

Скорость легко определяется из законов кинематики: v
S
t

2
2

2

4
= , 

 Таким образом, из второго уравнения следует:  
 



 

 

6

 

mg
SF

t
1

g
S4h c

2

2

+=  

 
Выполнение работы 

  Трибометр с бруском, подложенным под него, образует наклонную плоскость. 
  Скатывая трубку по наклонной плоскости, измеряем время скатывания. При 
этом следим, чтобы длина наклонной плоскости все время оставалась постоянной. В 
нашем случае S = (80± 1) cм. Изменяя высоту, с которой скатывается трубка (меняя 
угол наклона плоскости к горизонту), получаем ряд значений t и h, которые занесены 
в таблицу 1 и представлены на графике 1. 
 

Таблица 1 
 

h(cm) 2,4 2,6 2,7 2,9 3,3 3,7 3,9 4,5 5,0 5,5 
t (c ) 4,2 4,0 3,9 3,8 3,2 3,1 3,0 2,8 2,6 2,4 

1/t210-3 57 62,5 66 69 98 100 110 130 150 170 
 

  
 
 
 
 

График 1
 

Как видно из графика зависимость h(1/t2) линейная. Следовательно, она описы-
вается уравнением вида Y = aX + b, где Y = h,  а = 4S2/g; X = 1/t 2; b = FcS1/m(t1)2 . 
Кроме того, а = tg α. Определив коэффициент а, можно получить значение ускоре-
ния свободного падения - g. 

g = 4S 2/ a 
Поскольку зависимость линейная, наиболее достоверные результаты даст обра-

ботка при помощи МНК 
g = (9,55 ± 0,95) м/с2; ε  = 10 % 

Следует отметить, что данная работа требует аккуратных измерений и грамот-
ной обработки результатов. Метод наименьших квадратов при обработке результа-
тов измерений предпочтительнее других, так как результаты измерений являются 
независимыми и погрешности измерений подчиняются нормальному распределе-
нию. 

 
Дополнение. Вместо бруска, как подставки для трибометра, удобно использо-

вать пластилин. 
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5. Полуупругие столкновения 
 

Согласно гипотезе Ньютона при упругом, но не абсолютно упругом ударе шари-
ка о неподвижную поверхность отношение скоростей тел до удара и после удара есть 
величина постоянная. Это отношение называют коэффициентом восстановления 
 

Задание. Проверьте гипотезу Ньютона для столкновения резинового и пласт-
массового шарика о деревянную и пластиковую поверхность. 
 

Оборудование. Теннисный и резиновый шарики, деревянная доска, стол с пла-
стиковым покрытием, метровая линейка. 
 

Выполнение работы. 
Непосредственное измерение скоростей шарика затруднительно, поэтому необ-

ходимо измерить зависимость высоты подскока шарика после удара h, от высоты паде-
ния h0. 

Из закона сохранения энергии следует: gh2v = . Тогда. 
00 h

h
v
v
==γ .  

Меняя высоту, с которой падают шарики (h0), измеряем высоту (h), на которую 
они поднимаются после удара.  
 Так как измерения достаточно приближенные, то для каждой высоты приходит-
ся проводить по 10 измерений и брать среднее значение. В наших измерениях проводи-
лось по 10 опытов каждой серии (всего серий - 15). По полученным данным можно на-
ходить среднее значение γ.  

Таблица 1. 
h0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 
h 6 11 15 20 24 27 31 36 40 42 50 52 55 57 61 

0h
 

3,2 3,9 4,5 5,0 5,5 5,9 6,3 6,7 7,1 7,4 7,7 8,1 8,4 8,7 8,9 

h
 

2,5 3,3 3,9 4,5 4,9 5,2 5,6 6,0 6,3 6,5 7,1 7,2 7,4 7,5 7,8 

 
График функции 

0hh γ= приведен на ри-
сунке. 

 Это функция вида y = ax. 
В таком случае гораздо эффек-
тивней в данной работе приме-
няется МНК, поскольку в обра-
ботке результатов присутствуют 
все измерения, проведенные не-
зависимо друг от друга.  

Для резинового шарика, 
падающего на пластиковое по-
крытие (плотно приклеенное к 
массивному основанию) полу-
чим (см таблицу 1). 

Расчеты, проведенные с 
помощью МНК, дают значения: 
 γ = 0,91;    ∆γ = 0,07;   ε =7% 

 

График 1
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6. Столкновение шаров 
 

Задание. Проверьте закон сохранения импульса системы тел при упругом 
столкновении шаров. 
 
Оборудование: 1) Два стальных шарика различной массы на нитях; 2) линейка с мил-
лиметровыми делениями, 3) весы с разновесом, 4) штативы лабораторные. 
 

Выполнение работы. 
 

Установите прибор с шариками на столе. Под шариками, параллельно плоскости 
их колебаний установите линейку. 
 Если один из шариков отклонить от положения равновесия на небольшой угол и 
отпустить, то при ударе суммарный импульс системы сохраняется. Отрегулируйте сис-
тему таким образом, чтобы происходил центральный удар. 
 Если при отклонении первого шарика от положения равновесия его центр под-
нимается на высоту h, то в момент удара о второй шарик его скорость равна : 

11 2ghv =        (1) 

При малых отклонениях 
L

xh
2

2
1

1 = , где L – длина подвеса х1 – смещение шарика в гори-

зонтальном направлении. Отсюда скорость 
L
gxv 11 = .  

 После удара оба шарика отклонятся соответственно на 1
1x  и 1

2x . 
 Подставляя значения скоростей в закон сохранения импульса, записанный в ска-
лярной форме, получим: 

1
22

1
1111 xmxmxm +=                       (2) 

 
 Проведя соответствующие измерения, сделайте вывод о выполнении закона со-
хранения импульса. 
 
 

7. Трение качения 
 

 а) Прикрепите к внутренней поверхности металлического кольца небольшой 
кусочек пластилина. Расположите  кольцо в вертикальной плоскости на поверхности 
стола. Если теперь его слегка толкнуть, то оно начнет колебаться. Период малых коле-
баний кольца T  зависит от массы прикрепленного кусочка пластилина m   по закону  

T = Cmβ  (1) 
 

Задание 1. Исследуйте экспериментально зависимость периода малых колеба-
ний кольца от массы прикрепленного кусочка пластилина. Проверьте справедливость 
формулы (1), определите параметр β. Объясните полученное значение. 

б) Сила трения качения определяется формулой 

F k
R

N=  ,        (2)              

где N - сила нормальной реакции опоры, R  - радиус катящегося тела, k - коэффициент 
трения качения. 
 Задание 2. Определите коэффициенты трения качения кольца по бумаге и по 
поверхности стола. 
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Оборудование:  металлическое кольцо, пластилин, линейка, лист бумаги, секун-

домер. 
 

Выполнение  работы. 
 

 Рассмотрим движение кольца с закреп-
ленным кусочком пластилина массой m . При ма-
лом смещении кольца от положения равновесия 
пластилин повернется на некоторый угол ϕ от 
вертикали. Можно записать закон сохранения 
энергии при колебательном движении кольца 

constmgrC
=− ϕω cos

2

2

,           (1) 

где C - некоторая постоянная величина (можно даже выписать ее значение C m r= 2 0
2 , 

но оно в дальнейшем не понадобится). При малых углах поворота уравнение (1) при-
нимает вид 

constmgrC
=+

22

22 ϕω
,              (2) 

соответствующий гармоническим колебаниям с периодом  

mgr
CT π2= .                             (3) 

Таким образом, период малых колебаний обратно пропорционален корню квад-
ратному из массы пластилина.  
 Для проверки этой зависимости разделим кусок пластилина на несколько одина-
ковых частей и измерим периоды колебаний Tn  кольца с различным числом n  кусоч-
ков  пластилина. Результаты измерение приведены в таблице 1. 
 

Таблица измерений 1. 
 

n  1 2 3 4 5 6 7 
T c,  3,54 2,73 2,24 1,95 1,79 1,68 1,58 
lnn  0 0,69 1,10 1,38 1,61 1,79 1,94 
lnT  1,26 1,00 0,81 0,67 0,58 0,52 0,46 
 

Для проверки предсказанной  формулы построим график периода колебаний от 
числа кусочков пластилина в логарифмическом масштабе  ln (ln )T F nn = .  

 
 

ϕr
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График 1  
На графике видно, что данная зависимость является линейной с коэффициентом 

наклона равным (рассчитан по МНК) γ = (-0,45± 0,07), что подтверждает предсказан-
ную теоретическую зависимость. 

 
2. Для измерения коэффициента трения качения исследуем затухающие колеба-

ния кольца с большой амплитудой. Пусть начальное отклонение кольца от положения 
равновесия равно x0  (его следует сделать как можно большим, соответствующим по-
ложению кусочка пластилина  почти в верхней точке). Если масса кольца заметно пре-
вышает массу пластилина, то силу трения качения можно считать постоянной. Тогда 
изменение энергии кольца равно работе силы трения.  

 Обозначим на листе бумаг начальное отклонение от положения равновесия x0 , 
и будем отмечать места последовательных остановок колеблющегося кольца  
′ ′ ′x x x x x0 1 1 2 2, , , , ... Потенциальная энергия кольца в точке с координатой x  определяет-

ся по формуле  

)cos1()cos1(
r
xmgrmgrU −=−= ϕ , 

где m  - масса пластилина.  
 
Тогда изменение энергии  между последовательными остановками с одной стороны от положения равно-

весия (предпочтительнее проводить обработку данных именно таким способом чтобы исключить влия-

ние возможного наклона стола)  

∆U mgr x
r

x
r

n n= − −(cos cos )1 . 

Пройденный путь при этом находится по формуле nnnn xxxS ′++= − 21 . Таким 
образом, баланс энергий имеет вид 

mgr x
r

x
r

k
r

m gSn n
n(cos cos )− =−1

0 , 

где m0  -масса кольца.  
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Если построить график зависимости ∆(cos )x
r
n  от Sn , то ее коэффициент 

наклона будет равен 
m
m

k
r

0
2⋅  , откуда можно вычислить коэффициент трения качения. 

Результаты измерений приведены в таблице 2. 
 

Таблица измерений 2. 
 
n  xn ,см ′xn , см Sn , см cos x

r
n  ∆(cos )x

r
n  

0 16 9,4  -1,0  
1 9,0 6,3 43,8 -0,19 0,81 
2 6,5 4,1 28,1 0,29 0,48 
3 4,4 2,3 19,1 0,65 0,36 
4 3,0 0,7 12,0 0,83 0,18 
5 2,0  6,4 0,92 0,09 
 

 
Обработка зависимости методом 
наименьших квадратов привела к 
результату : коэффициент на-
клона a = ±0 019 0 002, , , отку-
да коэффициент трения качения 
k см= ±( , , )0 049 0 005 . Отно-
сительная погрешность состави-
ла 10%. Отметим, что для изме-
рения отношения масс можно 
использовать линейку 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

              ⎟
⎠
⎞

⎜
⎝
⎛

r
xncos∆
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График 2



 

 

12

 

8. Упругость резины. 
 
Задание 1. Исследуйте зависимость силы упругости резинового жгута от его де-

формации.  
Задание 2.  Проверьте, выполняется ли при этом закон Гука.  
Задание 3.  Определите коэффициент жесткости при малых деформациях. 

 
Оборудование: резиновый жгут, штатив с двумя лапками, линейка ученическая, 

груз массой m = 100 г (из набора для лабораторных работ). 
Выполнение работы. 
 Одна из возможных схем проведения работы 
заключается в следующем. Закрепляем на горизон-
тально расположенном стержне штатива резиновый 
жгут, степень растяжения которого можно изменять. 
Затем к середине жгута подвешиваем груз известной 
массы и измеряем величину прогиба (провисания) 
жгута Х. 
 Обозначим. L –длина нерастянутого жгута, l0 – 
расстояние между точками крепления жгута на стойке 
штатива. Удлинение жгута можно рассчитать по фор-
муле 

LXll −+= 22
0 4∆   (1) 

 Сила упругости определяется из условия равновесия груза 

X
XlmgmgN

4
4

sin2

22
0 +

==
α

  (2) 

 Изменяя расстояние между точками крепления груза, можно варьировать силу 
натяжения жгута и его деформацию. 
 В данной работе использовался груз массой m = 100 г, следовательно mg  ≈ 1,0 
Н. Длина нерастянутого жгута в наших экспериментах L =15 см. 
 

Используя данные измерений, построим график зависимости силы упругости от 
деформации резинового жгута. 

 
Таблица измерений. 

 
№ L0, см Х, см ∆l, см N, Н 
1 15 4,0 2,0 2,1 
2 17 3,3 3,2 2,8 
3 20 2,8 5,8 3,7 
4 23 2,5 8,5 4,7 
5 25 2,3 10,4 5,5 
6 28 2,2 13,3 6,4 
7 30 2,1 15,3 7,2 
 

Коэффициент упругости жгута 
найдем, используя график, как отноше-
ние приращения силы упругости к из-
менению деформации. 

м
Н

l
Nk 38

)(
≈=

∆∆
∆ . 

             N, Н
   7

   6

   5

   4

   3

   2

   1

                 2      4      6       8     10     12   14     16 ∆L, см
График 1

                           l0

                             x
              N                       N

                                Mg

Рис.1.
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9. Исследовать крутильные колебания маятника. 
 

 Линейка, подвешенная на двух параллельных нитях, может совершать крутиль-
ные колебания вокруг своей оси (крутильный маятник). 
 

Задание 1. Получите формулу периода колебаний крутильного маятника. 
 

 Закрепите на линейке керамические магниты. 
 

Задание 2. Исследуйте, как зависит период колебаний маятника от расстояния 
между нитями. 

 
Задание 3. Исследуйте, как зависит период колебаний маятника от длины нитей. 
 
Задание 4. Исследуйте, как зависит период колебаний маятника от массы гру-

зов, закрепленных на линейке. 
 
Задание 5. Исследуйте, как зависит период колебаний маятника от  положения 

магнитов на линейке 
 
 Оборудование. Линейка ученическая длиной 40-50 см (2шт), нить длиной 0,5 м 
(2шт), штатив с муфтой, металлический стержень, длиной 40 – 50 см, секундомер, маг-
ниты керамические, бумага миллиметровая. 

Примечание. Керамические магниты удобно использовать как грузы известной 
массы. Они легко крепятся к линейке и легко сдвигаются по линейке 
 

Выполнение работы. 
 

Задание 1. Масса линейки mл = 10,6 г. Масса одного магнита m = 23 г. Мини-
мальное количество магнитов, которые крепятся на линейке 4 шт. Таким образом, мы, в 
первом приближении, можем пренебречь массой линейки. Кроме того, размеры магни-
тов значительно меньше длины линейки, поэтому магниты можно рассматривать как 
материальные точки. 
При повороте линейки на малый угол вокруг собственной оси, она поднимется на вы-
соту 

l
RRllh

2
)(

22
22 αα =−−=  

 Потенциальная энергия линейки при этом увеличится на  
l

RmgЕп 2

22α∆ =  

 При вращении линейки с угловой скоростью ω, ее кинетическая энергия равна 

2

2ωJЕк = , 

где J – постоянный коэффициент (момент инерции), зависящий от распределения масс. 
Закон сохранения энергии при вращательных колебаниях записывается в виде 

const
l

RmgJ
=+

22

222 αω
. 

 Проводя аналогию с колебаниями груза на пружине, constkxmv
=+

22

22

, можно 

выразить период колебаний линейки 
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Рис.1.

22
mgR

JlT π= . 

 
 Задание 2. Собираем установку, состоящую 
из штатива; закрепленного на нем стержня и 
подвешенной к стержню на двух нитях линейки 
(Рис.1). На концах линейки закрепим по два 
керамических магнита. Повернем маятник на 
небольшой угол от положения равновесия и 
отпустим его. Маятник начнет совершать 
крутильные колебания. Меняя расстояние R между 
нитями, будем измерять период колебаний 
маятника. Результаты измерений приведены в 
таблице 1 и показаны на графике 1 
 

Таблица 1 
R, см 32 30 28 26 24 22 20 18 
Т, с 1,85 1,98 2,05 2,28 2,35 2,60 2,91 3,40 
R, см 16 14 12 10 8 6 4 2 
Т, с 3,61 3,80 4,94 5,40 7,18 10,2 15,5 34,0 

 

График 1.
 

 
Как видно из графика зависимость Т(R) напоминает гиперболическую. Чтобы 

проверить предположение построим график зависимости Т(1/R) (График 2) 

График 2.
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Полученный график близок к прямой, (зеленым цветом  проведена наилучшая 
прямая). Следовательно, период колебаний крутильного маятника обратно пропорцио-
нален расстоянию между нитями, на которых он подвешен, что подтверждает сделан-
ный теоретический вывод.  

 
Задание 3. Для выполнения пункта 3 используем прежнюю установку. На этот 

раз расстояние между нитями оставляем неизменным (в нашем случае R = 20 см), но 
изменяем длины нитей. Полученные результаты приведены в таблице 2 и на графике 3. 

 
Таблица 2. 

 
L, 
см 

69 61 52.5 49 46 42 37 34 29 25 20 16 

Т, с 2,56 2,49 2,3 2,2 2,13 2,0 1,84 1,75 1,66 1,53 1,32 1,18 
 

График 3
 

 
Вид графика 3 дает основания предполагать, зависимость Т(L) не линейная. 

Приведем  к линейной зависимости, т.е. построим график зависимости Т2 = f(L). 
 

График 4.
 

 
Полученный результат позволяет делать вывод о том, что LfT = . Это под-

тверждает справедливость нашей теории. 
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Задание 4. Проверим зависимость периода колебаний линейки от массы. Остав-

ляя в установке постоянными длины нитей, расстояние между ними, положение грузов 
на линейке, будем изменять массу грузов и измерять период колебаний линейки. Ре-
зультаты эксперимента приведены в таблице 3. 

 
Таблица 3. 

 
mг, г 94 141 188 211 265 
Т, с 3.16 3,28 3,26 3,22 3,26 

 
Полученный результат (в пределах погрешностей) позволяет говорить о том, что 

период крутильных колебаний линейки не зависит от массы грузов, что еще раз гово-
рит о правильном теоретическом выводе. 

 
Задание 5. Проверим зависимость периода колебаний от расстояния S между 

грузами. Для этого, оставляя длины нитей и массу линейки с грузами, а также расстоя-
ние между нитями постоянной, будем изменять положение грузов на линейке, меняя 
расстояние S между ними. 

Результаты эксперимента представлены в таблице 4 и на графике 5. 
 
Таблица 4. 

 
S, см 38 36 34 32 30 28 26 
Т, с 3,26 3,02 2,94 2,78 2,6 2,4 2,25 
S, см 24 16 14 12 10 8 6 
Т, с 2,10 1,45 1,30 1,17 1,02 0,89 0,77 

 

График 5.
 

 
 
Как видно из графика, данная зависимость является линейной. 
Таким образом, проведенная работа подтверждает справедливость наших теоре-

тических выводов 
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10. Проверка закона сохранения импульса и энергии при упругом 
столкновении шаров 

 
Задание 1. Проверьте экспериментально выполнение закона сохранения им-

пульса при столкновении движущегося шара с неподвижным, установленным на гори-
зонтальном участке лотка. Объясните полученные результаты. 
 Задание 2. Проверьте экспериментально выполнение закона сохранения энергии 
при столкновении движущегося шара с неподвижным, установленным на горизонталь-
ном участке лотка. 
 

Оборудование. Штатив с муфтой и лапкой, лоток дугообразный, набор из двух 
пластмассовых, двух стальных и двух алюминиевых шаров с заданными массами, лис-
ты белой и копировальной бумаги, линейка масштабная. 
 

Выполнение работы. 
 
 Простейшая методика выполнения экс-
перимента состоит в следующем. С помощью 
листов белой и копировальной бумаги фиксиру-
ем место падения шара при его скатывании по 
свободному лотку и измеряем дальность полета 
S шара (рис.1). Начальная скорость шара к мо-
менту начала свободного полета равна v = S/t., 
где t – время падения шара. 
 Поставив на горизонтальный участок 
лотка второй шар, измеряем дальности полета S1 
и S2 шаров после их столкновения (рис.2). Ско-
рости шаров после столкновения равны v1 = S1/t  
и v2 = S2/t. Так как время падения шаров во всех 
опытах одинаково, для проверки закона сохране-
ния импульса достаточно проверить выполнение 
соотношения 
 

m1S = m1S1 + m2S2      (1) 
 
где m1 и m2 – массы сталкивающихся шаров. 
 Для того, чтобы сделать вывод о выпол-
нимости или невыполнимости закона сохранения 
импульса в этом эксперименте, следует сравнить 
относительные погрешности измерений расстоя-
ний (S, S1, S2) с относительным отклонением ле-
вой и правой части выражения (1). 
Для проверки закона сохранения энергии полу-
чим: 

2
22

2
11

2
1 SmSmSm +=   (2) 

 Относительная погрешность измерения дальности полета %100
S
hs

s =ε , где hs – 

абсолютная погрешность. Следовательно, для уменьшения значения погрешности εs 
необходимо подбирать условия эксперимента так, чтобы значение S было максимально 

                    v
  h

                 H

                                   S

Рис. 1

 h                        v

                   H

                                   S1

                                       S2

Рис.2
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велико. С этой целью лоток следует установить на всю высоту штатива, а шар от-
пускать с верхней точки лотка. кать с верхней точки лотка. 

Примечание 
Для пластмассовых шаров отклонение левой и правой частей выражения (1) ока-

зывалось существенно больше, погрешностей измерений – импульс шаров после удара 
возрастал! Причина невыполнения закона сохранения импульса состоит в том, что шар 
при скатывании с лотка вращается. При столкновении пластмассовых шаров одинако-
вых масс движущийся шар в момент удара останавливается, полностью передавая свой 
импульс второму шару. Однако за счет энергии вращательного движения, запасенной 
при скатывании, первый шар снова начинает двигаться по горизонтальному участку 
лотка. Вследствие этого правая часть выражения (1) оказывается больше, чем того тре-
бует закон сохранения импульса. 

Для стальных шаров закон сохранения импульса в пределах погрешности изме-
рений выполняется, так как более гладкие стальные шары соскальзывают с лотка. 

В данной работе возможно количественно определить долю (k) первоначальной 
потенциальной энергии, превращающейся в кинетическую энергию вращения: 

mgh

mvmgh

mgh
E

k вр 2

2

−
==   (3) 

где h - высота, с которой скатывался шар (Рис. 2) v – скорость его поступатель-
ного движения, определяемая выражением: 

gH
S

t
Sv

/2
==   (4) 

Из выражений 3 и 4 следует 

Hh
S

mgh
HmgSmghk

4
14/ 22

−=
−

=   (5) 

Для стального шара k ≈ 0,1 
Для пластмассового k ≈ 0,3 – 0,35 
Для алюминиевого k ≈ 0,4. 
 
Такие расхождения  связаны с качеством обработки, материалом из которого из-

готовлены шары 
Наибольшее проскальзывание, при движении по лотку, было у стального шара, 

наименьшее – у алюминиевого. 
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11. Почти ядерная физика. 
                                          

До настоящего времени основным экспериментальным методом исследования 
свойств микрочастиц является изучение характеристик столкновения частиц. На 
этом пути экспериментатор сталкивается со множеством проблем:  поток частиц, 
как правило, имеет большой разброс значений энергии, вероятности некоторых про-
цессов могут быть достаточно малыми, измерение некоторых характеристик частиц 
вызывает технические сложности, неизбежно присутствуют значительные флук-
туации результатов, проведение эксперимента требует терпения, а также больших 
временных и материальных затрат. 

Вам предстоит, частично познакомится с некоторыми из этих проблемами, в 
модельной системе: в качестве моделей частиц используются обыкновенные пласт-
массовые шашки, “ускорителем” частиц - металлический цилиндр, подвешенный на 
нити, тормозящей средой и регистрирующей системой - лист бумаги и, наконец, ис-
точником энергии, управляющей, контролирующей и анализирующей системой Вы са-
ми. 

Соберите установку для исследования соударе-
ний шашек между собой. Подвесьте металлический ци-
линдр на нити так, чтобы в нижней своей точке он поч-
ти касался стола. Отклоняя нить на известный угол, и 
плавно отпуская, его можно использовать в качестве 
“ускорителя” частицы. После удара шашка должна 
скользить по бумаге, расстеленной на столе или на по-
лу (где вам удобней). 

 
Задание 1. Покажите, что мерой начальной ки-

нетической энергии частицы (шашки) может служить 
путь, пройденный этой шашкой до остановки. 

 
Задание 2. Постарайтесь добиться максимальной стабильности начальной энергии 
шашки сразу после удара. Оцените экспериментально относительную флуктуацию на-
чальной энергии шашки. Какими методами вам удалось уменьшить разброс начальных 
энергий? 

Относительной флуктуацией физической величины X называется отношение 
ее среднеквадратичного отклонения к среднему значению 

ε
σ

σ= = =
−∑ ∑

X
k

k
X

k
k

X
X

X

N

X X

N
; ;

( )2

. 

 
Задание 3. Исследуйте зависимость начальной энергии шашки при центральном 

ударе от угла отклонения нити ϕ . Проведите сравнение экспериментальной и теорети-
ческой зависимостей. 

 
Задание 4. Считая удар металлического цилиндра о шашку абсолютно упругим, 

а массу цилиндра значительно больше массы шашки, определите коэффициент трения 
шашки о бумагу.  

Какие систематические факторы, по вашему мнению, наиболее сильно влияют 
на ошибку определения коэффициента трения?  

 

               ϕ

           цилиндр

                         шашка

Рисунок 1.



 

 

20

 

Задание 5. Исследуйте нецентральный удар цилиндра о шашку.  
Покажите (теоретически), что скорость шашки после удара (в 
рамках описанных в п.4 приближений)  пропорциональна cosα , 
где α  угол между скоростями цилиндра до удара 

r
U0  и шашки 

после удара 
r

V . Исследуйте экспериментально эту зависимость. 
 
Задание 6. Определите коэффициент потерь η  механической энергии при цен-

тральном ударе двух шашек, одна из которых первоначально покоилась.  

η =
−E E

E
0

0

, где E0  - механическая энергия шашек до удара, E - энергия после удара. 

 Задание 7. Исследуйте зависимость скорости шашек после столкновения (одна 
из которых покоилась) от угла  α  между скоростями шашки до и после удара.  
 
Пункты 6. 7. Рекомендуем выполнять одновременно – произошел центральный удар – относите его к п. 

6, если нецентральный, то к п.7, если столкновение не произошло – используйте результат для контроля 

начальной энергии. 

 
Выполнение работы. 

 
 Выполнение данного задания требует проведения большого числа измерений в 
каждом пункте, так как велик статистический разброс начальных скоростей шашек, 
существенное влияние также оказывает прицельный параметр, значительно влияющий 
на углы рассеяния. 
 1. При движении шашки по горизонтальной поверхности на нее действует по-
стоянная по модулю сила трения скольжения F mgтр = µ , всегда направленная проти-
воположно скорости. Поэтому работа силы трения равна произведению силы на прой-
денный путь A mgSтр = µ . Работа силы трения на всем пути до остановки по модулю 

равна начальной кинетической энергии E mv
k =

2

2
. Так как сила тяжести и коэффици-

ент трения остаются постоянными, то пройденный до остановки путь пропорционален 
начальной энергии шашки 

S v
g

= 0
2

2µ
.   (1) 

 2. Для того чтобы уменьшить разброс начальных энергий шашки после удара 
цилиндра необходимо, прежде всего, точно задавать начальный угол отклонения нити. 
В наших экспериментах подвешенный груз “стартовал” от упора, в качестве которого 
использовалась ножка стула (свои эксперименты мы проводили на полу). Во всех изме-
рениях длина нити подвеса оставалась неизменной и равной L cм=72 . Рассчитывать 
погрешность этой величины нет смысла, так как она заведомо меньше погрешностей 
других измеряемых флуктуирующих величин (например “длины свободного пробега”).  
 После довольно продолжительных тренировок нам удалось достичь следующих 
результатов по стабилизации параметров удара. 
Полученные значения дальности (в см) в серии из 17 измерений: 
49, 49, 50, 53, 52, 50, 48, 50, 51, 51, 52, 52, 53, 54, 55, 51, 54. 
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Среднее значение S
S

N
см

k
k= ≈
∑

51 .  

Статистический разброс ∆S
S S

N
см

k
k=

−
≈

∑( )2

2 . 

Относительная флуктуация  ε = ≈
∆S
S

4% . 

3. При начальном отклонении маятника на угол ϕ  его потенциальная энергия (относи-
тельно нижней точки) равна 

U Mgl= −( cos )1 ϕ . 
Следовательно, такую же кинетическую энергию будет иметь цилиндр в нижней точке 
в момент удара. Поэтому скорость цилиндра в момент удара может быть найдена из 
соотношения 

MV Mgl0
2

2
1= −( cos )ϕ ,    (2) 

из этого уравнения следует 
V gl0 2 1= −( cos )ϕ .  (3) 

Легко показать, что при лобовом столкновении малого тела с гораздо более тя-
желым, скорость малого тела изменяет знак на противоположный и увеличивается по 
модулю на величину 2 0V  . (для доказательства этого утверждения достаточно перейти 
в систему отсчета, связанную с массивным телом). Таким образом, при абсолютно уп-
ругом ударе цилиндра о шашку последняя приобретет скорость 
v gl0 2 2 1= −( cos )ϕ . Согласно ранее доказанному, путь, пройденный до остановки, 
пропорционален квадрату скорости, следовательно, на основании формул (1) и (3) по-
лучим 

S l
= −

4 1
µ

ϕ( cos )    (4) 

Для проверки этого соотношения достаточно построить зависимость пройденного пути 
S  от величины  ( cos )1 − ϕ  

Нами использовалась такая методика выполнения это-
го задания. Изменялось и измерялось расстояние x∆ от ниж-
ней точки маятника до стартового упора. При известной ве-
личине длины подвеса вычислить косинус труда не представ-
ляет.  

cosϕ = − ⎛
⎝⎜

⎞
⎠⎟

1
2∆x

l
.   (5) 

Для каждого значения ∆x проводилось 10 измерений длины пути, причем “за-
считывались” только центральные удары. По этим данным рассчитаны средние значе-
ния S  и построен необходимый график. В результате проделанной работы оказалось, 
что построенная зависимость является линейной, что подтверждает справедливость 
проведенных рассуждений.  (Таблицы 1,2, график 1). 
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Таблица 1. 
∆x       Sk      S  
см 1 2 3 4 5 6 7 8 9 10  
45 76 71 71 81 80 75 82 80 83 74 77 
40 52 63 57 59 60 57 55 54 59 60 58 
35 43 42 41 41 42 40 39 38 40 42 41 
30 30 31 29 28 32 27 27 30 31 27 29 
25 20 21 17 21 19 18 20 19 20 21 20 
20 11 12 10 10 11 11 12 12 11 11 11 
 
Таблица 2. 
∆x  см 45 40 35 30 25 20 
1 − cosϕ   0,22 0,17 0,13 0,09 0,06 0,04 

S  см 77 58 41 29 20 11 

 
График 1. 
 

4.  Как следует из 
формулы (4), коэф-
фициент наклона 
(обозначим его С)  
этого графика равен 
4l
µ

. Определив этот 

коэффициент, мож-
но найти и значения 
коэффициента тре-

ния   
С
l4

=µ .  

По нашим 
экспериментальным 
данным получены 
следующие резуль-

таты (по МНК): смС )21360( ±= , и коэффициент трения  

µ = ≈4 0 80l
A

, ∆µ ≈ 0 05,  

 
Мы получили явно завышенное значение коэффициента трения, основная при-

чина этого - неупругость удара. 
5. При нецентральном упругом ударе тяжелого тела о более легкое скорость по-
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следнего определяется формулой, которая следует из законов сохранения энергии и 
импульса 

v V0 02= cosα  ,   (6) 
все обозначения остались прежними. 

Для экспериментальной проверки этого уравнения представим его в виде   
v V0

2
0
2 24= cos α , так как квадрат скорости пропорционален пути до остановки, то 

достаточно проверить линейности зависимости  
S ~ cos2ϕ   (7) 

После каждого удара на бумаге мы определяли положение шайбы после удара, измеряя 
величины a b, (смещения шайбы вдоль и поперек вектора скорости “ударника”), знание 
этих величин достаточно, для проверки зависимости (7). Так пройденный путь и квад-
рат косинуса определяются соотношениями 

 
22

2
2

22

ba
bcos

baS

+
=

+=

α
 

Результаты измерения представлены в следующей таблице 3 и на графике 2. 
Таблица 3. 
b 52 49 47 44 38 20 51 49 45 42 
a 7 12 16 14 14 16 11 9 12 19 

α2cos
 

0,98 0,94 0,9 0,91 0,88 0,61 0,96 0,97 0,93 0,83 

S 52 50 50 46 40 26 52 50 46 46 
b 36 19 40 34 33 32 30 22 7 17 
a 15 18 19 14 13 16 15 18 13 19 

α2cos
 

0,85 0,53 0,82 0,86 0,87 0,80 0,80 0,60 0,25 0,44 

S 39 26 44 37 35 36 33 28 15 26 
 
График 2. 
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Как видно разброс данных в данном эксперименте значителен, однако, четко видна 
тенденция увеличения пройденного пути с ростом косинуса угла.  
 
6. – 7. Для исследования столкновения шашек мы использовали следующую схему экс-
перимента. 
  Первая шашка располагалась на прежнем месте под “ударником”, а вторая на ее пути, 
на расстоянии h  (в наших экспериментах  cмh 16= ). После столкновения шашек изме-
рялись отклонения шашек 2211 b,a,b,a . При центральном ударе первая шашка останав-
ливалась практически на месте второй, а вторая смещалась на некоторое расстояние 1S . 
По результатам таких экспериментов, возможно, определить коэффициент потерь ме-
ханической энергии 

hS
S

hS
ShS

−
−=

−
−−

=
0

1

0

10 1η , 

где hS −0   средняя “энергия” шашек до удара, 1S  - после удара. В результате на-
ших экспериментов получены следующие значения (дальности приведены в сантимет-
рах): 
S0  = 50, 50, 54, 49, 49;      4500 ±=〉〈S  
S1  = 26, 24, 23, 27, 27      3251 ±=〉〈S   
 смh 16= . 
Рассчитанный по этим данным коэффициент потерь равен 

120250 ,, ±=η . 
Погрешность значения определена по формуле 

2

2
0

01

2

0

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

∆
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
∆

=∆
)hS(

SS
hS

S
η . 

Как следует из полученного результата, коэффициент потерь достаточно высок. Еще 
большее значение имеет этот коэффициент при столкновении с металлическим цилин-
дром, что подтверждает наш вывод о завышенном значении коэффициента трения. 
 При исследовании зависимости скорости шашки после удара от угла отклонения 
можно использовать значения углов и пройденных путей для обеих шашек, так как 
распределения скоростей для ударяющей и покоящейся шашек одинаковы. Нами про-
ведены измерения для 25 ударов. Результаты обработки представлены на графике 3. 
График 3. 

Делать какие-либо обоснованные выводы из этих данных затруднительно. 
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12. Энергия вращательного движения 
 

Целью данной работы является изучения качения небольшого шарика по наклонному 
желобу. В качестве подставки переменной высоты рекомендуем использовать кусок 
пластилина. 

 
Задание 1. Исследуйте, является ли движение шарика по желобу равноускорен-

ным. 
Задание 2. Исследуйте зависимость ускорения шарика  от высоты желоба h . 
 
Задание 3. При скатывании шарика 

с вершины желоба, его потенциальная 
энергия (W = mgh) превращается в кинети-
ческую энергию поступательного движе-

ния шарика (
2

2mvW = ) и кинетическую 

энергию вращательного движения шарика. 
Определите экспериментально, какая доля энергии шарика превращается в энер-

гию вращательного при различных высотах наклонной плоскости. 
 

Оборудование. Желоб для лабораторных работ, шарик пластмассовый, линей-
ка с миллиметровыми делениями, секундомер, пластилин, миллиметровая бумага. 

 
Выполнение работы. 

 
Для выяснения того, является ли движение шарика равноускоренным, будем скатывать 

шарик с наклонной плоскости. При этом: 2

2 2
2 t

LaatL =⇒=  где L – длина наклонной 

плоскости, t – время скатывания шарика, а – ускорение. 
Выставим постоянную высоту наклонной плоскости (в нашем случае h = 2 см) и 

будем задавать разные длины наклонной плоскости. 
Результаты измерений приведены в таблице 1 и на  графике 1. 
Таблица 1 
L  (см) 10 20 30 40 50 60 
t (c) 1,12 1,32 2,44 2,38 2,75 3,15 
 1,34 1,38 1,94 2,56 2,93 3,80 
 1,10 1,44 2,10 2,41 3,08 3,21 
 1,12 1,42 1,91 2,37 2,93 3,08 
 0,98 1,35 2,13 2,39 3,05 3,28 
 1,12 1,38 2,!5 2,42 2,91 3,20 
 1,21 1,40 1,95 2,29 2,86 3,20 
 1,05 1,52 2,12 2,34 2,92 3,21 
 1,30 1,62 2,14 2,32 3,03 3,19 
t ср (с ) 1,15 1,95 2,11 2,38 2,92 3,18 
а (м/с2) 0,15±0,02 0,18±0,03 0,13±0,02 0,14±0,03 0,12±0,03 0,11±0,03 
 
Как видно из таблицы, при различных длинах наклонной плоскости ускорение шарика 
постоянно (в пределах погрешностей) 
 
 

     h               L
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График 1.
 

График зависимости L = f(t2) представляет собой прямую, что свидетельствует о 
постоянстве ускорения скатывающегося шарика. 
 
Задание 2. Зависимость ускорения шарика от высоты наклонной плоскости проверяет-
ся при помощи той же установки. Изменяя с помощью пластилина высоту наклонной 
плоскости, будем измерять время скатывания. Данные эксперимента приведены в таб-
лице 2 и на графиках 2 и 3. 
Длина наклонной плоскости во всех случаях одна и та же (68 см) 
Таблица 2 
 
h (см) 10 9 8 7 6 5 4 3 2 1 
t ( c) 1,51 1,64 1,78 1,82 1,96 2,16 2,45 2,69 3,45 4,90 
1/t2 0,44 0,37 0,32 0,30 0,26 0,214 0,17 0,14 0,084 0,042 
a (м/с2) 0,61 0,51 0,44 0,42 0,36 0,30 0,23 0,19 0,12 0,058 
η 0,42 0,39 0,38 0,41 0,41 0,41 0,40 0,44 0,40 0,40 

График 2
 

 
Полученная зависимость напоминает гиперболическую. Чтобы убедиться в 

этом, построим график функции ⎟
⎠
⎞

⎜
⎝
⎛= 2

1
t

fh  
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График 3
 

Как мы убеждаемся, из графика 3, время скатывания шарика с наклонной плос-
кости пропорционально h . 

Задание 3. При скатывании шарика с вершины желоба, его потенциальная энер-
гия (W = mgh) превращается в кинетическую энергию поступательного движения ша-

рика, (
2

2mvW = ) и кинетическую энергию вращательного движения шарика. 

Определить, какая доля энергии превращается в кинетическую можно по дан-
ным второго эксперимента. Результаты приведены в нижней строке таблицы 2. 

2

22 21
2
21

2
11

ght
S

gh
aS

gh
v

W
W

W
WW kk −=−=−=−=

−
=η  

 
По результатам 10 измерений получено η = 0,40±0,01 
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13. Изучение колебаний груза, подвешенного на резиновом жгуте. 
 
 При деформации резины, в ней возникает сила упругости. Следовательно, если к 
резиновому жгуту подвесить груз и заставить его совершать вертикальные колебания, 
то это будут колебания маятника. Назовем такую систему резиновым маятником. 
 
 Задание. Исследовать колебания резинового маятника. 
 

Оборудование. Штатив с муфтой и лапкой, резиновый жгут шириной 6 мм 1 шт, 
резиновый жгут шириной 3 мм 1 шт, набор грузов по 100 г лабораторный, секундомер, 
линейка ученическая, миллиметровая бумага. 

 
Выполнение работы. 

 Сделаем на конце жгута петлю для подвешивания грузов и закрепим второй ко-
нец жгута в лапке штатива. Предварительно на жгуте поставим две метки (в нашем 
случае расстояние между метками L0 = 20 см). Подвешивая на жгуте грузы различной 
массы будем измерять новую длину L жгута (расстояние между метками). 
 Для каждого случая, кроме  того, будем измерять период колебаний груза. По-
лученные данные заносим в таблицу 1 и таблицу 2. 
 

Таблица 1 (для жгута шириной 3 мм). 
 
 При увеличении нагрузки При снятии нагрузки 
M, кг 0,1 0,2 0,3 0,4 0,5 0,6 0,5 0,4 0,3 0,2 0,1 
L, см 21,5 39 53 72 85 94 94 90 81 60 37 
Т, с 0,52 0,98 1,05 0,93 0,82 0,79 0,84 1,00 1,25 1,34 0,80 
 

По полученным данным по-
строим график зависимости 
периода колебаний маятника 
от массы груза. На графике 1 
показано значение периода 
колебаний груза на резино-
вом жгуте шириной 3 мм при 
увеличении нагрузки и при 
уменьшении нагрузки. Ста-
новится видно, что какой-
либо зависимости, описывае-
мой аналитическим уравне-
нием, получить нельзя.  
   
 Если считать колеба-
ния груза на резиновом шну-
ре гармоническими, то пери-
од колебаний должен быть 
пропорционален квадратному 
корню из массы груза, или, 
что то же T2 ~ m. 
Построим график зависимо-
сти T2 ~ m (График 2).  

 
 

График 1

График 2
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Зависимость не линейная. Таким образом, мы приходим к выводу, что колеба-

ния груза, подвешенного на резиновом шнуре, не гармонические. Вероятно, это связано 
с тем, что жесткость резины меняется в зависимости от деформации резины. В этом мы 
можем убедиться проанализировав таблицу 2 и график 3. 

 
Таблица 2 
 При увеличении нагрузки При снятии нагрузки 
M, кг 0,1 0,2 0,3 0,4 0,5 0,6 0,5 0,4 0,3 0,2 0,1 
L, см 21,5 39 53 72 85 94 94 90 81 60 37 
K, 
Н/м 

15,4 10,5 9,1 7,7 7,7 8,1 6,8 5,7 4,9 5,0 5,9 

 
 
 Коричневым цве-
том на графике 3 показана 
зависимость удлинения 
резины от приложенной 
силы при увеличении на-
грузки. Красным – при 
уменьшении нагрузки на 
резиновый шнур. Из гра-
фика видно, что при изме-
нении нагрузки жесткость 
резины меняется. Кроме 
того, различие в величине 
деформации при увеличе-

нии и уменьшении нагрузки говорит о том, что у резины появляется достаточно боль-
шая остаточная деформация (явление гистерезиса).  
 Аналогичные результаты наблюдаются и для резины шириной 6 мм.  
 Таким образом, мы можем прийти к следующему выводу. Так как при деформа-
ции резины не выполняется закон Гука, т.е. деформации неупругие, колебания груза на 
резиновом шнуре нельзя считать гармоническими. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

График 3
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14. Исследование колебаний маятника на сложном подвесе. 
 
 Маятник подвешен, как показано 
на рисунке. Верхняя нить закреплена в 
точках А и В, лежащих на одном уровне, 
точка крепления С находится ниже этого 
уровня на ∆L, а грузик - ниже на L. Не ис-
пользуя линейку и часы определить экс-
периментально отношение Х = ∆L/L. 
 
 Поскольку нельзя использовать 
линейку, Х определим по колебаниям сис-
темы. Можно возбудить два вида колеба-
ний: 
 - в плоскости чертежа, при этом  

g
LLT ∆π −

= 21    (1) 

 
 - перпендикулярно плоскости чертежа, при этом 

g
LT π22 =   (2) 

 Отсюда следует, что 

2

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
T
T

L
LL ∆

(3) 

 
 По условию задачи использовать часы нельзя, поэтому, отклонив груз сначала в 
плоскости, перпендикулярной плоскости чертежа, а затем, толкнув грузик вбок, возбу-
ждаем оба вида колебаний сразу. Груз при этом будет описывать эллиптическую траек-
торию с изменяющимся направлением оси. Для числа колебаний N, при которых коле-
бания совпадают с первоначальным, можно записать T1(N+1) = T2N  (4). 
 Из выражений (3) и (4) получаем: 
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15. Исследование деформации изгиба и деформации кручения 
деревянной ученической линейки 

 
Деформация изгиба. 

Задание 1. Исследуйте зависимость стрелы прогиба деревянной линейки от дли-
ны свободной части линейки. 

Задание 2. Исследуйте зависимость стрелы изгиба деревянной линейки от массы 
подвешенного груза. 

 
Оборудование. Линейка деревянная ученическая (40 см), набор грузов лабора-

торный, устройство для крепления линейки, линейка для измерения стрелы прогиба 
 

Выполнение работы. 
Закрепим с помощью зажима линейку на краю стола и, изменяя длину высту-

пающей части линейки, будем измерять величину стрелы изгиба. 
Полученные данные заносим в таблицу. 
Таблица 1. (масса груза, подвешенного на конце линейки, m = 0,5 кг) 
 

L, 
см 

5 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

H, 
см 

0.1 0,1 0,2 0,3 0,4 0,7 1,2 2,0 2,5 3,2 4,3 5,2 6,0 7,1 8,4 

 
По полученным данным строим график зависимости h от L.  
 

График 1.  
Зависимость стрелы изгиба линейки от длины выступающей части. (Красным 

цветом выделена кривая 86,0224,00132,0 2 +−= xxh ). 
Зависимость стрелы изгиба от массы снималась при длине выступающей части 

линейки L = 26 cм. При этом измерялся период колебаний груза на линейке. Получен-
ные результаты приведены в таблице 2 и на графиках 2 и 3. 

 
Таблица 2 

 
m, кг 0.1 0,2 0,3 0,4 0,5 0,6 
h, см 1,5 3,1 4,7 6,2 7,8 9,5 
Т, с 0,28 0,34 0,4 0,47 0,49 0,53 
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График 2.  
 
На графике зависимости h = f(m) хорошо заметна прямая пропорциональность. 
 
График 3 изображает зависимость Т от m. 
 

График 3.
 

 
Зависимость периода колебаний такого маятника от массы подвешенного груза.  
Зеленый цвет – экспериментальная кривая. 
Красный цвет 18,09,0568,0 2 ++−= mmТ  
 

Деформация кручения 
С той же линейкой проведены исследования деформаций кручения. 
Зависимость h от m приведена в таблице 3 и на графике 4 

M, кг 0,1 0,2 0,3 0,4 0,5 0,6 
H, см 5 8,5 10 11 11,5 12 
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График 4.
 

Измерялась высота опускания рычага при постоянной длине вылета линейки L = 
25 cм т. е., практически это зависимость sin α от m. 

Зеленый цвет – экспериментальная кривая. 
Красный цвет - +−+−= 3456 332210243143757638 mmmmh  
 
В таблице 4 и на графике 5 приведена зависимость h от L (sinα от L),   где L – 

длина той части линейки, к которой приложена вращающая ее сила. 
 
Таблица 4 
 

L 2 4 6 8 10 12 14 16 18 20 22 24 
h 1 3 4 5,5 6,5 7,5 8 8,5 9 10 10,5 10,8 

 

График 5
 

 
По-прежнему на графике 
Зеленым цветом – экспериментальная кривая 
Красным - ...)109,2()1002,1()1026,1( 657688 −⋅+⋅−⋅= −−− LLLh  
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16. Конический маятник. 
 
Задание 
1. Исследуйте зависимость периода вращения маятника от радиуса окружности, по 

которой движется маятник. 
2. Исследуйте зависимость периода вращения маятника от длины нити, на которой 

подвешен маятник. 
3. Определите при помощи такого ускорение свободного падания в данной точке. 
 
Оборудование. Штатив с лапкой и муфтой, шарик на нити, секундомер, линейка, мил-
лиметровая бумага, лист бумаги формата А-4, циркуль. 
 

Выполнение работы. 
 

Подвесив шарик над листом бумаги, добиваемся равномерного вращения шари-
ка по заданному радиусу. Для этого расчертим лист на ряд концентрических окружно-
стей с шагом 1 см. 
 При равномерном вращении шарика получаем: 

αmgtg
R
vm =

2

  и 22
2

2 4 RL
g

T −=
π  

где L – длина нити, на которой подвешен шарик, R – радиус окружности, по которой 
вращается шарик, Т – период обращения α - угол, который нить составляет с вертика-
лью. 
 
Результаты проведенных измерений приведены в таблице 1 и на графике 1 
L,см 71 65 62 59 53 51 48 41 35 30 23 16 
T,с 1,69 1,6 1,58 1,54 1,46 1,43 1,38 1,28 1,19 1,05 0,9 0,8 
T2,с2             
g,м/
с2 

9,81 9,89 9,80 9,82 9,82 9,84 9,9 9,88 9,76 10,7 11,2 9,87 

 
 
 

График 1
 

 
МНК дает такие же результаты. 
 
 
 


