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1. Для решения задачи воспользуемся “оптико-

механической аналогией”: построим 
двукратное “изображение” участка 
между лугом и рекой. Изображения 
вигвама обозначены ′B  и ′′B . 
Очевидно, что кратчайший путь от 
точки А до ′′B  есть отрезок прямой 
AB′′ . Этому “изображению” пути 
соответствует реальная траектория 
минимальной длины ACDB . Из построения следует, что ее длина 
равна длине отрезка AB′′ : 

l l hmin .= +2 24  
 

2. Удобнее всего решать задачу, заметив, что при подобном 
движении с постоянной по величине скоростью путь, пройденный 
собакой, может быть найден по формуле: 

S v= 0τ ,                                                               (1) 
где v0  — скорость собаки, τ  — время ее движения между 
пешеходами до момента их встречи. 

Время  легко найдем, определив скорость сближения 
пешеходов v v vA B= + : 

τ =
+
l

v vA B

0 .   (2) 

 
С учетом (2) равенство (1) перепишется в виде: 

S v
v v

l км
A B

=
+

=0
0 1 1,  . 

Соответствующий график приведен 
на рисунке. Здесь: ( )x tA  и ( )x tB  — 
зависимости пешеходов A и B, ( )x tC  — 
искомая зависимость координаты 
собаки от времени. 

Интересна ситуация вблизи 
точки встречи пешеходов. Ломаная на 
графике будет иметь бесконечное 
количество звеньев, хотя время 
движения собаки конечно. Конечно же, при решении мы считали 
собаку материальной точкой, т.к. ей очень сложно будет 
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“крутиться” между пешеходами, когда расстояние между ними 
станет меньше длины собаки. 

 
3. В задаче ничего не сказано о том, где встречаются 

автобусы пассажиру: только по пути или на конечных станциях 
тоже? Это напрямую связано с вопросом: стоят ли автобусы на 
станциях или они практически мгновенно отправляются в путь? 
Разберем оба варианта. 

Вариант 1. Автобусы не стоят на станциях, поэтому 
пассажир насчитал в дороге три встречных автобуса. Построим 
график координаты автобуса с нашим пассажиром (толстая линия 
на рис.).  Обозначены точки, соответствующие встречам 
автобусов., т.е. через эти точки проходят графики координат 
встречных автобусов, движущихся в момент встречи в пункт A. 
Достроим эти графики. Получаем пространственно — временную 
схему движения и встреч автобусов. Подсчитаем число автобусов 
на линии. Это можно 
сделать для любого 
фиксированного момента 
времени. Например, для t=8 
мин; один автобус 
находится в пункте A, 
второй — в B, а еще два 
встретились посередине 
между A и B. Итого 4 автобуса. Время в пути 16 мин. Средняя 
скорость движения 

v км
мин

км иас= =
8

16
30

.
/ . 

Вариант 2. Пассажир считает и 
автобусы, стоящие на конечных станциях. 
Тогда графики координат в автобусов в 
зависимости от времени имеют вид, 
представленный на следующем рисунке. 
Автобусы стоят по 8 минут на конечных пунктах (не меньше, 
иначе они начнут чаще встречаться). Подсчет числа автобусов 
опять дает число 4. С учетом времени стоянки средняя скорость 
автобусов оказывается по-прежнему 30 км/ч (автобусы едут 8 
минут со средней скоростью 60 км/ч и 8 минут стоят). Автобусы 
могут стоять и больше, но тогда должно быть увеличено и число 
автобусов на линии. 
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4. Так как между ударами шарик движется по прямой, а 
удары абсолютно упруги, то траектория шарика подобна 
траектории луча света между зеркалами. Построим многократные 
изображения «зеркал» друг в друге. Эти 
изображения будут  представлять лучи, 
выходящие из одного центра, угол между 
которыми равен α = 10o . То есть таких лучей 
35. Теперь движение шарика можно 
рассматривать как движение в «пространстве 
изображений» по прямой AB. Из 
треугольника AOC легко найти минимальное 
расстояние OC, на которое приблизится шарик к центру 

r h мmin sin ,= =ϕ 0 7 .  
Чтобы шарик испытал максимальное число отражений, его 

необходимо направить под небольшим углом к оси конуса, 
например, вдоль AB1. Очевидно, что максимальное число 
отражений 18.  

На следующем 
рисунке показана истинная 
траектория ABCDE  , и ее 
«изображение» ABC D E' ' '  
для шарика упруго 
отражающегося от стенок 
угла в 300  (мы увеличили 
в данном случае угол для 
большей наглядности изображения). 

 
5. Введем оси координат 

как показано на рисунке. За время 
t угол поворота относительно 
центров соответствующих 
окружностей равен 

ϕ ω= t . 
 

Тогда координаты точек A и B в 
произвольный момент времени 

x R R t
y R t

x R R t
y R t

A

A

A

B

= − +
=

⎧
⎨
⎩

= =
=

⎧
⎨
⎩

cos ,
sin ,

sin ,
cos

ω
ω

ω
ω

 

Если мы ведем наблюдение из точки A, то координаты точки B 
относительно А будут такими 
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( )
( )

x x x R R t t
y y y R t t

B A

B A

0

0

2= − = + −
= − = −

⎧
⎨
⎩

sin cos ,
cos sin .

ω ω
ω ω

 

Если эти координаты сложить, то их сумма равна постоянной 
величине 

x y R0 0 2+ = . 
Вообще говоря, эта формула задает 
уравнение прямой y R x0 02= −  в 
системе отсчета, связанной с 
движущейся точкой A. Однако, 
движение точки B ограничено. 
Например, координаты y  лежит в 
пределах от R 2  до - R 2 . Таким 
образом, точка B движется 
относительно точки A вдоль 
отрезка прямой y R x0 02= − . 
 

6. Рассмотрим движение одной черепахи A. Она движется с 
постоянной по модулю скоростью, направление которой постоянно 
меняется, т.к. смещается тот объект B, на который эта скорость 
направлена. Все черепахи движутся одинаковым образом, поэтому 
в любой момент времени они будут находится в вершинах 
правильного n-угольника, вписанного в окружность меньшего чем 
R  радиуса. Найдем с какой скоростью уменьшается радиус R . 

Проекция скорости черепахи на радиус v vr = cosα  есть 
величина постоянная, в силу сохранения симметрии их 
расположения со временем, т.е. угла α . Найдем этот угол 

2
2

α β π α π β
− = ⇒ =

− , 

а угол β  для правильного n-угольника, вписанного в окружность 
равен 

β π
=

2
n

. 

Итак 

α π π
= −

2 n
, 

тогда 

v v
n

v
nr = −⎛

⎝⎜
⎞
⎠⎟
=cos sin .π π π

2
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Время достижения центра окружности точки O при равномерном 
приближении к ней 

t R
v

R

v
n

r

= =
sin

.π  

Этот же результат можно получить и другим способом. Скорость 

сближения черепах v v vC = − cos β
2

 (это относительная скорость 

движения одной черепахи относительно другой). Зная, что 
начальное расстояние между ними это сторона правильного n -
угольника,  вписанного в окружность, можно определить время 
сближения. Подробности решения и иллюстрации можно найти в 
журнале “Фокус” (№1-2 за 1993 г., с. 53-55). 
 
7. Скорость движения любой точки на поверхности сферы 
направлена радиально и может быть записана в виде 

r
r

v v r
R1 0
1= , 

где v0  — скорость нарастания радиуса R , rr1  — 
радиус-вектор точки в системе отсчета, 
связанной с центром сферы. 

  Относительная скорость “разбегания” 

( )r r r r rv v v v
R

r rOTH = − = −1 2
0

1 2 . 

Таким образом, скорость “разбегания” пропорциональна 
расстоянию между точками. 
 
8..Вектор перемещения локомотива 

r r
S AB0 = , вектор 

перемещения последнего вагона 
r r
S CC1 1= . Ясно, что 

r
S R0 2=  ,  

r
S R

1 2
=
π , а угол между векторами 

ϕ = 45o . Относительное перемещение ∆
r r r
S S S= −0 1  

 
∆S S S S S R R R

R

= + − = + −

= + −

0
2

1
2

0 1
2 2 2 2

2

2 2 4

2 4

cos /

/

ϕ π π

π π
 

 
Относительная скорость v vотн = 2 . 
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9.«Группировка» исчезнет , когда самый быстрый автомобиль из 
второй группы догонит самый медленный автомобиль из первой. 
За время τ = 2 0, мин  самый медленный автомобиль удалится на 
расстояние S v0 1= τ , тогда «быстрому» потребуется время 

∆t S
v v

v
v v

=
−

=
−

0

2 1

1

2 1

τ  , чтобы его догнать, при этом он пройдет 

расстояние  S v
v v

v v
км= =

−
≈2

1 2

2 1

10∆τ τ . 

 
10.Объем размотанной за время t ленты равен  V vtdh= , где h - ее 
высота, этот же объем  ( )V R r h= −π . Приравнивая, найдем 

зависимость r t( ) , r r vd t= −0
2

π
, а угловая скорость вращения 

ω

π

= =
−

v
r

v

r vd t0
2

. 

Отсюда можно выразить частоту вращения катушки 

n = =
ω
π2

v

r vd t2 0
2π

π
−

  .  

 
11. Для решения задачи мысленно дополним систему 
вращающихся жестких стержней так, как указано на рисунке. 
Поскольку при вращении системы стержни AB и OC будут 
оставаться параллельными (в силу жесткости горизонтальных 
стержней), то движение точки С будет вращением с той же угловой 
скоростью (частотой 
вращения) относительно 
точки O, что и  точки В. 
Если AB l= , то:   

ω ω= ⇒ = ⋅ =
v
l

v l vB
C B3 3 .

  
При этом вектор rvC  параллелен вектору rvB , т.е. составляет угол 
π α
2
−  с горизонтом. 

Заметим, что подобные жесткие механические конструкции 
достаточно часто применяются для умножения (v vC B= 3  (!)) 
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скорости или перемещения в различных устройствах: от детских 
игрушек и бытовых сушилок до складных солнечных батарей 
космических аппаратов. При этом коэффициент умножения 
определяется числом звеньев в системе (в приведенном примере 
n = 3 ). 
12. Пусть машинист начал издавать гудок в момент времени t0 , 
когда поезд находился на расстоянии l (в точке C) от переезда, а 
закончил в точке D в момент времени t t1 0= + τ , при этом поезд 
находился на расстоянии l −υτ  от переезда. Начало гудка 
достигло точки A в момент времени 

t t l
cAO = +0  (здесь c — скорость звука), а 

конец гудка в момент времени 

t t l v
cA1 0= +
− τ . Следовательно, 

длительность гудка в точке A 

τ τA A At t v
c

c= − = −⎛
⎝⎜

⎞
⎠⎟
=1 0 1 3 24, .  

Аналогично, для точки B можно получить 

( )
τ τ τ

τ
B

BD
c

BC
c

l v l h
c

c= + − = +
− − +

=
2 2 2

3 25, .  

 
13. Найдем скорость движения спутника из закона всемирного 
тяготения и второго закона Ньютона 

( )
mv

R H
G Mm

R H

2

2+
=

+
,    (1) 

где M - масса Земли, R - ее радиус, m - масса спутника, G - 
гравитационная постоянная. 
Тогда 

v GM
R H

v
=

+
= 1

2
,      (2) 

 

где v GM
R1 =  — первая космическая скорость, а по условию 

H R= . 
“Тень” спутника движется по поверхности 
Земли, когда спутник проходит по дуге AB. 
Угловая величина этой дуги может быть 
найдена из геометрических соображений 
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AB R
R

∪
= = =2 2

2 3
α πarcsin ,  

 
что составляет 1/6 периода обращения спутника , причем 

( )T
R H
v

R
v

=
+

=
2 4 2

1

π π .       (3)                                                 

Путь “тени” равен половине длины экватора S R= π . 
Следовательно, средняя скорость “тени” 

v S
t

S
T vcp = = =

6

3
2 2 1 . 

 
14. Можно решить эту задачу традиционным способом, выбирая 
оси Ox вдоль наклонной плоскости и Oy  - перпендикулярно ей. Мы 
думаем, что читателям при желании под силу проделать эти 
вычисления самостоятельно. Здесь мы дадим более “современное” 
векторное решение первой части задачи. 
Пусть точка O - начало отсчета, 
точка B - место падения тела на 
наклонную плоскость. Радиус-
вектор точки B найдем из закона 
равноускоренного движения, 
записанного в векторной форме 

OB r r v t gt rB

→

= = + + =r r r
r

r
0 0

2

02
0, .  

Векторы rv t OA0 =
→

 и 
rgt

AB
2

2
=

→

 

изображены на рисунке. 
Обозначим модуль rrB  через S — это и есть дальность полета тела 
вдоль наклонной плоскости. По теореме косинусов из ∆OAB  
имеем 

                        ( )gt v t S Sv t
2 2

0
2 2

02
2⎛

⎝
⎜

⎞
⎠
⎟ = + − cos .β    (1) 

С другой стороны, из прямоугольных треугольников AOC и ABC 

cos
sin

sin

.β
α

α

= =
+

=
+

=
+OC

OA
OB BC

OA
OB AB

OA

S gt

v t

2

0

2  

 
Подставим cosβ  в (1) 



 10

( )gt v t S S S gt2 2

0
2 2

2

2
2

2
⎛
⎝
⎜

⎞
⎠
⎟ = + − +

⎛
⎝
⎜

⎞
⎠
⎟sin ,α  

или 

( )g t v gS t S
2 4

0
2 2 2

4
0− − + =sin .α    (2) 

 
Уравнение (2) есть биквадратное уравнение относительно 
неизвестного времени полета при заданной дальности. Для 
каждого S S< max  будет существовать два различных корня t t1 2,  
(две траектории полета) уравнения (2) и еще два корня со знаком 
“минус”, которые в нашем случае смысла не имеют и должны быть 
отброшены. В точку, соответствующую максимальной дальности 
полета, можно попасть только единственным образом. 
Следовательно, в этом случае корни t1  и t2  должны совпадать. Это 
означает, что дискриминант уравнения (2) относительно t 2  должен 
обращаться в нуль 

( )D v gS g S

v gS v g S g S

= − − =

= − + − =

0
2 2 2

2

0
4

0
2 2 2 2 2 2

4
4

2 0

max max

max max max

sin

sin sin

α

α α
 

 
Отсюда мы получаем квадратное уравнение относительно Smax  

 
g S gv S v2 2

0
2

0
42 0cos sin ,max maxα α+ − =  

 
решения которого равны 

 

S
gv g v g v

g
v
gmax

sin sin cos
cos

sin
sin

.=
− ± +

= ⋅
± −
−

0
2 2

0
4 2 2

0
4 2

2 2
0
2

2

1
1

α α α
α

α
α

 

 
Так как смысл имеет корень, соответствующий знаку “+”, то после 
сокращения на 1− sinα  окончательно получаем 

( )
S v

gmax sin
.=

+
0
2

1 α
 

При α = 0  отсюда следует известный результат для тела, 

брошенного под углом β  к горизонту: S v
gmax =
0
2

, который 

достигает при броске под углом β = 45o . 
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15. В данном случае шарик под действием силы давления ветра 
движется не в вертикальной плоскости AB , как это обычно 
случалось при пренебрежении действием ветра нормального 
вектору rv0 . При подобном трехмерном движении мячик за время 
падения совершит перемещение CB в направлении ветра. 

   Таким образом, он приземлится на расстоянии 
                                                                          

AC AB BC= +2 2                                       (1) 
от основания башни. 
Время полета определяется как и в случае свободного падения: 

t
H
g

=
2

.  Далее: 

AB v t v H
g

= =0 0
2 .        (2)              

BC at a
g

H= =
2

2
.                 (3) 

С учетом (2) и (3) выражение (1) примет вид: 

( )AC
g

gHv a H
g

H gv a H= + = +
1 2 1 20

2 2 2
0
2 2 .           (4) 

Интересно также обсудить траекторию шарика в данном случае.  
Закон движения можно записать в 
виде 

x v t

y h gt

z at

o=

= −

=

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

;

;

;

2

2
2

2

 

Проекции траектории на 
вертикальную плоскость XY  и 
горизонтальную ZX  являются 
ветвями параболлы. Проекция же 
на плоскость ZY  представляет 
отрезок прямой. Таким образом вся траектория лежит в плоскости, 
наклоненной поднекоторым углом α  к горизонту и  содержит в 
себе вектор rg* , определяемый векторным равенством: 

r r rg g a
g
a

*

.
= +

=

⎧
⎨
⎪

⎩⎪
tgα

    (5) 
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Обычно в подобных случаях его называют “эффективным 
ускорением свободного падения”: действительно, в плоскости 
′ ′′A A C  на рисунке изображена траектория ′A DC  мячика, 

соответствующая случаю его свободного падения в поле rg*  с 
горизонтальной начальной скоростью ( )r r rv g v0 0

*⊥ . 
16. Разобьем решении задачи на два этапа. Первый этап - движение 
булавки до отрыва от стола. Второй - свободное падение 
материальной точки с начальной скоростью с некоторой высоты. 
1 этап . Булавка падает под воздействием двух сил 
- силы тяжести и силы реакции опоры 

r
N . 

Считаем, что острый конец булавки упирается в 
закругление стола и не скользит. Пусть ось 
булавки отклонилась на угол α  от вертикали. 
Запишем II закон Ньютона 

mg N mar r r+ =  
в проекции на направлении оси булавки. 
Составляющая ускорения вдоль этой оси — это 

центростремительное ускорение mv
R

2

, где R l=  — длина булавки. 

Тогда 

mg N mv
R

cosα − =
2

. 

Момент отрыва обусловлен исчезновением силы реакции, т.е. 

N = 0  или mg m
R

cos = υ 2

. 

С другой стороны по закону сохранения энергии головка 
булавки приобретает кинетическую энергию за счет уменьшения 
потенциальной 

( ) ( )mv mgR v
R

g
2 2

2
1 2 1= − ⇒ = −cos cos .α α  

Подставив это в предыдущее уравнение получаем, что  

( )g g v gR gRcos cos cos , cos .α α α α= − ⇒ = = =2 1 2 3 2
3

2  

II этап. Считая булавку материальной точкой, запишем уравнение 
координат для головки булавки 

x x v tx= +0 , 

           y y v t
a t

y
y= + +0

2

2
. 

Из рисунка  видно, что 
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x l v v gRx0
2
3

2
3

= = =sin , cos ,α α  

y l v v gR a gy y0
5

3
2
3

= − = = =cos , sin , .α α  

Падение происходит с высоты 2 м, следовательно, 
начальные координаты x0 и y0 весьма малы 

x y= ⋅ = −
⎛

⎝
⎜

⎞

⎠
⎟

5
3

0 01 0 02
30, , ,м м  и ими можно пренебречь по 

сравнению, например, с высотой падения. Окончательно 

x vt gRt= =cosα 2
3

2
3

, 

y v t gt vt gt
y= + = +

2 2

2 2
sinα . 

В момент падения y H= , поэтому получается квадратное 
уравнение для времени падения 

gt vt H t
v v gH

g

2 2 2

2
0

2
+ − = =

± +
sin ,

sin sin
,α

α α
 

Сравним  v gR gR2 2 5
9

2
3

10
27

sinα = ⋅ =   и  2gH . Ясно, что  2 10
27

H R
>>  

и можно воспользоваться приближенной формулой 

t
v gH

g
≈
− ±sinα 2

 

Выбираем знак “+” и находим время падения t c= 0 6, .   
Теперь легко найти и горизонтальное смещение булавки при 
падении 

x м≈ 0 1,  . 
 
17. В случае перемещения кирпича по движущейся ленте сила 
трения будет направлена против 
относительной скорости кирпича 
по ленте. Перейдем в систему 
отсчета, связанную с лентой. 
Согласно преобразованиям 
Галилея, скорость кирпича в этой 
системе отсчета   

r r ru v v= −1 0  .                                
Тогда вектор 

r
Fтр  ориентирован против вектора ru  и равен 

µmg = 31 4, H . Следовательно, силу, равную 31 4, Н  необходимо 
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приложить вдоль вектора ru  под углом α = =arctg 1 ov
v0

2  к вектору 

( )− rv0 . 
 
 
18. Рассмотрим равновесие участка цепочки ∆mi , видимого из 
центра кольца под малым 
углом ( )ϕ ϕi i → 0 . Согласно 
условию равновесия  
 
∆m g N T T Oi

r r r r r
+ + + =1 2 ,   (1)  

                         
где 

r
N  – сила реакции со 

стороны поверхности 
конуса, 

r
T1  и 

r
T2  – силы 

натяжения цепочки в 
соответствующих сечениях. 
Из-за малости ϕi  примем, что 

r
N  направлена вдоль оси симметрии 

участка. 
Проецируя (1) на вертикальную и горизонтальную оси, 

получаем: 

{ }

N m g m g

T T N

i i

i
i i

sin ,

sin cos ,

α
π
ϕ

ϕ ϕ ϕ α

= =

= → = =

⎧

⎨
⎪

⎩
⎪

∆
2

2
2

0 2 1
2

                (2) 

где T T T= =
r r
1 2 . Из системы (2) имеем: 

T mg
=

2π
αctg .                                                 (3) 

При α → 0  (конус «превращается» в цилиндр) T →∞ , а это 
говорит о том, что любая цепочка здесь порвется (при условии 
отсутствия трения - сработает «эффект клина»).  Иными словами, в 
такой ситуации на гладком цилиндре никак удержаться нельзя. 

При α π
=

2
 (конус «превращается» в плоскость), 

естественно, T = 0 . В этом случае цепочка покоится будучи 
ненапряженной.  

 
19. Поскольку блок находится в равновесии, сумма сил, 
действующих на него, равна нулю 
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2 2 00 0T T T T− = =, . 

Силу натяжения нити с грузами найдем, 
записав второй закон Ньютона для грузов. 

T m g m a T m g m a− = − − =1 1 2 2, .  
Откуда 

T m m
m m

g=
+

2 1 2

1 2

. 

Учитывая, что m m1 2>> , имеем 
T m g0 22≈ .  

Интересно отметить, что эта сила натяжения 
определяется весом меньшего груза. 
  

20. На рисунке обозначены только силы, действующие в 
горзонтальном направлении, поскольку силы тяжести и силы 
реакции опоры компенсируют друг друга и в решении задачи не 
используются. Будем считать 
для определенности, что 
F F2 1> , т.е. вся система 
движется равноускоренно 
направо, в сторону оси x. 
Запишем проекции второго 
закона Ньютона на ось x для всех трех тел: 

F T m a
T T m a
T F m aA

2 2

0

1 1

− =
− =
− =

⎧

⎨
⎪

⎩⎪

B

A B

,
,
.
 

 
Складывая эти уравнения и выражая ускорение, получаем 

a
F F

m m m
=

−
+ +

2 1

1 2 0
.  

 
Подстановка ускорения в первое и третье уравнения системы 
позволяет найти искомые силы натяжения 
 

T F m F F
m m m

m F m F m F
m m mB

2= − ⋅
−

+ +
=

+ +
+ +2 2

1

1 2 0

1 2 0 2 2 1

1 2 0

, 

T F m F F
m m m

m F m F m F
m m mA

2= − ⋅
−

+ +
=

+ +
+ +1 1

1

1 2 0

2 1 0 1 1 2

1 2 0

,  
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Подумайте, что измениится, если F F1 2> . А еще очень интересный 
случай, когда F F1 2= . Будут ли силы натяжения TA и TB тоже 
одинаковы? 

 
21. Изобразим силы, действующие в данной механической 

системе. Рассмотрим первый случай, когда к правой нити 
прикреплен брусок массой 2m . Из факта начала движения груза m  
по горизонтальной плоскости делаем вывод, что сила трения 

r
Fтр  

достигла своего предельного значения (трение покоя сменилось 
трением скольжения): 

                                                                                       
F Nтр = µ .  (1)   

Тогда: 
 

T T mg
T mg
T mg

1 2

1

2

0
2

− − =
=
=

⎧

⎨
⎪

⎩⎪

µ ,
,

.
 (2)                      

 
Из (2) находим: 
 

µ = 1.    (3) 
Относительно (3) заметим, что подобные значения коэффициента 
трения достаточно редки (например, резина по резине может давать 
и большее значение µ ), однако принципиальных ограничений на 
величину µ  не существует (в отличие от коэффициента полезного 
действия η , например). 
Для движения груза  вправо с ускорением  перепишем 
 

T T mg ma
T m g m a

T mg ma
T T T T

1 2

3

4

2 4 1 3

− − =
− + =

− =
= =

⎧

⎨
⎪⎪

⎩
⎪
⎪

µ ,
* *

,
; .

  (4) 

 
где m* – искомая масса груза. Последнее равенство системы (4) 
следует из условия невесомости и гладкости неподвижных блоков и 
нитей. Решая систему, получим: 

( )m m
a g
g a

* =
+
−

2
                     (5) 
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Из (5) следует, что при a = 0  m m* = 2 , т.е. здесь содержится случай 
начала скольжения груза, описываемый системы (2). Поскольку 
масса не может быть отрицательный, то: 

a g≤ .                               (6) 
Это условие достаточно очевидно: в подобной системе невозможно 
достичь большего ускорения . Предельное значение a g→  
реализуется в случае m* ,→∞ , т.е. когда мы подвешиваем «гирю к 
воздушному шарику». 

Внимательный читатель конечно же заметил, что в условии 
не указано направление ускорения. Это требует от нас решения 
задачи и для второго случая: вектор ra  направлен влево. Однако 
даже при m* = 0  (правая нить вообще не нагружена), новый груз m 
не сможет сдвинуть брусок с места по причине большого трения в 
системе. Таким образом, этот вариант при данных условиях 
реализовать не удастся (по условию мы можем менять только груз 
m* ). 

 
22. Рассмотрим некоторую пылинку массой m , находящуюся на 
расстоянии r  от оси вращения. Допустим, 
что она не слетела с диска, т.е. вращается 
вместе с ним. Основной закон динамики 
запишется в виде: 

ma mg N Fr r r r
= + + тр ,  (1) 

  
где ra a r= = ⋅ω 2  – ускорение пылинки, 

r
N  

– сила реакции диска, 
r
Fтр  – сила трения пылинки о диск. Вектора 

mar  и 
r
Fтр  лежат в плоскости диска, вектор 

r
N  ей нормален. 

Представим вектор mgr  как сумму: 
mg mg mgr r r

= + ⊥'' ,    (2) 
где векторы rg g'' sin= α  и rg g⊥ = cosα  лежат соответственно в 
плоскости диска и нормальны последней . С учетом произведенного 
разложения векторное уравнение (1) может быть представлено 
системой: 

ma mg F
O mg N

r r r

r r r
= +
= +

⎧
⎨
⎩ ⊥

'' ,
.
тр     (2) 

Рассмотрим детальнее первое уравнение системы (2). Сделаем 
дополнительные построения в плоскости диска: вектор mgr'''  здесь 
будет направлен «вертикально» вниз, вектор − mar  будет 
непрерывно менять свою ориентацию, «вращаясь» по окружности, 
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вектор 
r
Fтр  должен, соответственно, замкнуть векторный 

треугольник: различным положениям пылинки соответствуют 
различные по направлению ускорения, но модуль этого вектора 
постоянен 

ra r= ⋅ω 2 . 
Очевидно, что максимальное значение 

r
Fтр ,  реализуется том случае , 

когда вектор − mar3  противоположен вектору mgr '' , то есть в нижнем 
положении пылинки. Здесь: 

F mg m rтр = +sin .α ω 2    (3) 
Таким образом, мы показали, что срыв пылинок с диска будет 
начинаться с его нижней точки. Учитывая, что предельное значение 
силы трения покоя F N mgтр = =µ µ αcos  перепишем (3) в виде: 

( )µ α α ωmg mg m rcos sin * ,= + 2    (4) 
где ω *  – критическое значение угловой скорости, при превышении 
которого данная пылинка покинет диск. Из (4) получим: 

( )
ω

µ α α
*

cos sin
.=

−g
r

    (5) 

Таким образом по мере раскручивания диска на нем, начиная от 
края, будет расти кольцо очищенной поверхности. Пусть его 
внутренний радиус rвн. . Считая, что опилки распределены по диску 
равномерно, найдем процент слетевших с него: 

( )
η

π

π
=

−R r2 2
вн

2R
 

и радиус rвн. : 
r Rвн = −1 η .     (6) 

С учетом (5) получим: 
( )ω
µ α α

η
*

cos sin
.=

−

−

g
R 1

                             (7) 

Из анализа (7) видим, что для реализации эффекта необходимо 
условие: 

µ α> tg , 
т.е. трение должно быть достаточно большим, чтобы в отсутствие 
вращения опилки не соскальзывали с диска. Кроме того, при 
η = 100%  выражение (7) теряет смысл ( )ω* → ∞ , иными словами, 
полностью диск не удастся очистить никогда, т.к. вблизи его оси 
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опилки будут практически покоится. Наконец, процесс «очищения» 

начнется при  угловой скорости ( )
ω

µ α α
**

cos sin
,=

−g
R

 

вытекающей из (7) при η = 0  (если все предыдущие условия 
выполнены). 

 
23. При движении тележки ее потенциальная энергия  

переходит в кинетическую, часть из которой есть энергия 
поступательного движения, а часть – энергия вращательного 
движения колес и осей. Поэтому запишем полную кинетическую 

энергию в виде β mv2

2
, где β  – неизвестный безразмерный 

коэффициент, зависящий от соотношения масс колес и платформы, 
размеров колес. Из закона сохранения энергии следует 

β αmv mgS
2

2
= sin .    (1) 

Так как силы, действующие на тележку, постоянны, то она 
движется равноускоренно. Поэтому 

v aS a S
t

2

0
22 2

= =, .     (2) 

Следовательно, 

β α2 2

0
2

mS
t

mgS= sin .    (3) 

После того, как на тележку положили груз (который движется 
поступательно), кинетическая энергия тележки с грузом выражается 

формулой ( )β βmv mv mv1
2

1
2

1
2

2 2
1

2
+ = + . Поэтому выражение 

аналогичное (3), имеет вид 

( )β α+ =1 2 2

1
2

mS
t

mgS sin .   (4) 

Исключая из (3) – (4) неизвестный параметр β , получим ответ 
задачи 

t t S
t g

c1 0
0
2

1
2

1 2 2 3= +
⎛
⎝
⎜

⎞
⎠
⎟ ≈

sin
, .

α
 

 
24. Проще решать задачу с использованием закона сохранения 
энергии: кинетическая энергия цилиндра расходуется на 
увеличение потенциальной энергии ленты, наматывающейся на 
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него. Поскольку лента гибкая, то ее изгиб (т.е. наматывание) не 
требует расхода энергии на деформации. Тогда: 

E EК П= ,(1) 
где E К  – кинетическая энергия цилиндра в начале наматывания, 
E П  – потенциальная энергия ленты в намотанном состоянии. 
При вычислении E К  не следует забывать про «вращательную» 
энергию цилиндра: 

E
mv mv

mvК = + =0
2

0
2

0
2

2 2
.   (2) 

Потенциальная энергия ленты в конечном состоянии: 
E MgR Rn gR n gRП = = =2 2 2π ρ π ρ ,       (3) 

где M Rn= 2π ρ  – масса ленты, g  – ускорение свободного падения, 
R  – радиус цилиндра. При записи (3) мы учли, что тонкая лента 
(см. условие), будучи намотана на цилиндр, существенно не 
изменит высоты его центра тяжести. Кроме того, совершение 
цилиндром ровно n оборотов позволяет утверждать, что центр 
тяжести системы будет лежать на оси цилиндра. 

С учетом (1) – (3), получим: 

v n gR
m0

22
=

π ρ .   (4) 

В случае реального ковра будет сказываться потеря энергии на 
внутреннее трение, на его деформацию, на утолщение цилиндра. 
Данный эффект можно пронаблюдать в обратной 
последовательности – слегка подтолкните свернутый ковер и он, 
заметно ускоряясь, «самораскрутится». 

Заметим, что движение ковра не будет равноускоренным. 
Подумайте также, куда «исчезнет» энергия ковра при 
«самораскрутке»? 
 
25. Покажем, что обруч оторвется от горки. Для определения 
скорости центра обруча в точке перегиба – точке соприкосновения 
окружностей А, воспользуемся законом сохранения энергии 

( )mv mgr mv mg R r0
2 2+ = + + ⋅ sin ,α   

откуда 

v v g R r2
0
2

2
= −

−⎛
⎝⎜

⎞
⎠⎟
.  
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Здесь учтено, что обруч участвует как в поступательном, так и во 
вращательном движении, поэтому его кинетическая энергия равна 
mv2 . Из рисунка видно, что 

( )α α= =30 1 2o sin . Для того, чтобы 
отрыва не произошло, необходимо 
выполнение условия: сила реакции 
N ≥ 0. 

Запишем уравнение второго 
закона Ньютона для центра масс в 
точке А 

mv
R r

mg N
2

+
= −sin ,α  

или  

N mg m
v g R r

R r
= −

−
−

+
sin .α

0
2

2  

Подстановка численных значений показывает, что условие N ≥ 0  не 
выполняется. Таким образом в точке А обруч оторвется от 
поверхности, и дальше его центр будет двигаться по параболе 
поднявшись на высоту 

h v
g g

v g R r
= = −

−⎛
⎝⎜

⎞
⎠⎟

2 2

0
2

2
3

8 2
cos ,α  

что соответствует высоте над уровнем горизонтальной поверхности 

( ) ( )H h R r v
g

R r R r м= +
+

= − − + + ≈
2

3
8

3
16

1
2

4 30
2

, . 

 
26. Чтобы преодолеть гору необходимо, чтобы кинетическая 
энергия была больше потенциальной энергии на вершине горы 

mv mgR0
2

2
≥  

или v gR0 2≥ . Наименьшая сила реакции 
N  в точке перегиба  А . В этой точке 

   mv
R

mg N
2

= −sinα  

Движение без отрыва при N ≥ 0. Используя закон сохранения 
энергии 

mv mv mgR0
2 2

2 2
= + sinα , 

получим 
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v gR0 3≤ sinα  

или, т.к. α = 30o , то  v gR0
3
2

≤ . Следовательно, такую горку 

преодолеть без отрыва шайба не сможет ни при каких скоростях. 
 
27. Оговоренные условия малости ( )h x  позволяют пренебречь 
различием между длиной профиля 
горки и длиной ее основания l . 
Разобьем путь шарика l на малые 
интервалы ∆xi . Выразим путь 
шарика в точке с координатой x , 
исходя из закона сохранения 
энергии: 

( )Cv Cv mgh x0
2 2= + .    (1) 

Здесь Cv2  – кинетическая энергия шарика.  
(Так как шарик движется поступательно и одновременно вращается, 

его кинетическая энергия превышает mv2

2
, в частности для 

сплошного шарика 

E mv I mv mR mvk = + = + =
2 2 2

2
2

2

2 2 2
2
5 2

7
10

ω ω , 

однако этот коэффициент не существенен для данной задачи.) 
Из (1) находим 

( ) ( )v x v mg
C

h x= −0
2 .    (2) 

Чтобы преодолеть участок ∆xi , шарику потребуется время 

( )
∆ ∆t x

v xi
i

i

= ,    (3) 

а время, за которое шарик преодолеет всю горку, можно найти, 
просуммировав (3) по всем интервалам разбиения ∆xi  

( ) ( )
( )t x

v x
x

v mg
C

h x

x
v

mg
Cv

h xi

ii

i

i
i

i
i

i
= =

−
= −

⎛
⎝
⎜

⎞
⎠
⎟∑ ∑ ∑
−

∆ ∆ ∆

0
2 0 0

2

1
2

1 . 

 
Учитывая малость h, можно воспользоваться приближенной 
формулой ( )1 1+ ≈ +z zα α , тогда 
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( ) ( )t x
v

mg
Cv

h x l
v

x mg
Cv

h xi
i

i
i i

i
≈ +

⎛
⎝
⎜

⎞
⎠
⎟ = +∑ ∑

∆ ∆
0 0

2
0 0

31
2 2

. (4) 

Чтобы найти время движения шарика через выемку t1  достаточно в 
(1), и в (4) изменить знак перед функцией  ( )h x  

( )t l
v

x mg
Cv

h xi i
i

1
0 0

32
= − ∑∆ .   (5) 

 
Сложим почленно (4) и (5) 

t t l
v1

0

2
+ = , 

Откуда искомое время 

t l
v

t1
0

2
= − . 

 
28. Изобразим силы, действующие на каждый из брусков . Запишем 
основной закон динамики (II закон Ньютона) для каждого из 
брусков в векторном виде: 
m a m g T N F

m a m g T
т1 1 1 1

2 2 2 2

r r r r r

r r r
= + + +
= +

⎧
⎨
⎩

р. , (1)

    
где 

r
T1  и 

r
T2  - силы натяжения 

нитей, 
r
N  - сила реакции 

поверхности стола, 
r
Fтр.  - сила 

трения. 
Как видим из (1), для вычисления ускорения бруска m1  нам 

необходимо знать силы 
r
T1 ; 

r
N ; 

r
Fтр. . Спроецировав систему (1) на 

горизонтальную (X) и вертикальную (Y) оси, и исключая силы 
трения и реакции опоры, получим: 

( )
m a m g T

m a T m g T
2 2 2 2

1 1 1 1

= −
= − −

⎧
⎨
⎩ cos sin

.
θ µ θ

   (2) 

Поскольку, по условию, трения в блоке нет и нить легкая, то сила ее 
натяжения постоянна. Определим кинематическую связь между a1  
и a2 . Рассматривая малые смещения брусков сразу после 
отпускания бруска m1 , можно найти 

a a
1

2=
cosθ

.                             (3) 
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Следует отметить, что это соотношение справедливо, только в 
начальный момент времени, скорости брусков равны нулю, так как в 
общем случае ускорение a1  зависит сложным образом от скорости 
грузов. 
Решая систему (2) – (3), получаем: 
 

( )
( )

a
m g m g
m m1

2 1

1 2

=
+ −

+ +
cos sin

cos cos sin
.

θ µ θ µ
θ θ µ θ

   (4) 

 
Относительно (4) заметим, что a1 не может быть отрицательным 
(сложно представить себе ситуацию, когда брусок m1 втаскивает на 
стол (1) брусок m2), т.е. ответ следует дать в сложной форме: 
 

( )
( )

( ) ( )a
m m

m g m g
m m

m m

a a

1

2

2 1

1 2
1 2

2 1

0
=

≥ +
+ −

+ +
≤ +

⎧

⎨
⎪

⎩⎪

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

, cos sin ;
cos sin

cos cos sin
, cos sin

cos

если

если

1µ θ µ θ
θ µ θ µ
θ θ µ θ

µ θ µ θ

θ

. (5) 

 
Подчеркнем также, что при θ = 0  из (5) получаем хорошо 
известный результат: 

a a m g m g
m m

g m m
m m1 2

2 1

1 2

2 1

1 2

= =
−
+

=
−
+

µ µ . 

Интересен случай предельного перехода ( )( )θ π
= =

2
02a ! , однако 

предлагаем читателям разобраться в нем самостоятельно. 
 
29. Сила, действующая на шарик в момент удара, направлена 
перпендикулярно поверхности призмы. 
Обозначим импульс этой силы за все 
время соударения 

r
P1 , по третьему закону 

Ньютона такой же по величине импульс 
получила и призма 

r
P2 . Поскольку время 

соударения обычно очень мало, 
импульсом силы тяжести по сравнению с 
импульсами сил упругости можно 
пренебречь.  

Изменение вертикальной составляющей импульса шарика 
определяется вторым законом Ньютона 

mv mv Py1 0+ = cos .α     (1) 
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Аналогично, для призмы 
MV P= sin .α                         (2) 

где V  – скорость призмы после удара. 
Из уравнений следует 

v v M
m

Vctgy1 0= − + α .     (3) 

Так как в системе шарик-призма нет внешних сил, имеющих 
горизонтальное составляющие, то проекция суммарного импульса 
на горизонтальную ось сохраняется, следовательно, 

mv MVx1 = .     (4) 
Запишем также закон сохранения механической энергии 

( )mv MV m v vx y
0
2 2

2
1
2

2 2 2
= + +! .    (5) 

Подставляя выражения (3) – (4) для компонент скорости (v x1  и v y1 ) 
шарика после удара, и решая полученное уравнение относительно 
величины V, получим 

V v
M
m

=
+

2 0

2

sin cos

sin
.α α

α
 

Отметим, что в данной ситуации «угол падения» шарика не равен 
«углу отражения». 

 
 
30. Движение призмы подчиняется 
уравнениям 
 

Ma F N T N
Mg T N N

= − − −
+ − − =

⎧
⎨
⎩

1 2 2

2 1 1 0
µ

µ
,
.
 

 
 
Для бруска справедливы уравнения движения (учитывая, что 
брусок движется вверх и вправо) 

ma N
ma T mg N

=
= − −

⎧
⎨
⎩

1

1 1

,
.µ
 

Совместное решение этих уравнений приводит к 
окончательному результату 
 

( )( ) ( )( )F g M m a M m= + + + + + +µ µ µ µ2 2 1 21 2 . 
 

 



 26

31.Силы трения, действующие на цилиндр в начальный момент со 
стороны полуплоскостей 

F mg
тр sin1 1 2

= µ
α

;   F mg
тр sin2 2 2

= µ
α

. 

 
Так как  µ µ1 2> , то  F Fт тр. р.1 2> , поэтому груз будет ускоряться в 
сторону движения пластины ОВ, пока не достигнет ее скорости v1 , 
после чего проскальзывание прекратится. Дальнейшее движение 
будет равномерным. Разгон происходит с ускорением 

( )a g
= −µ µ

α1 2 2 sin
, 

время разгона 

( )
τ

α
µ µ

= =
−

v
a

v
g
2 1

1 2

sin . 

График имеет вид, изображенный на  
рисунке. 
32. Пренебрегая сопротивлением воздуха, найдем, 
что при подлете к плите и большой, и маленький 
шарики будут иметь одинаковую скорость 
 

v gh0 2= .     (1) 
 

Первым испытает упругое соударение с плитой большой шар. 
Учитывая, что время этого соударения достаточно мало (оно имеет 

порядок τ =
2D
V

, где D – диаметр шара, V – скорость звука в нем), 

примем, что маленький шарик за этот период существенно не 
сдвинулся. Таким образом, следующее соударение 
происходит между шаром M, движущимся уже вверх с 
прежней по величине скоростью v0 , и шаром , 
продолжающим движение со скоростью v0  вниз. Считая 
это столкновение упругим, запишем законы сохранения 
энергии и импульса: 

( )mv M v mU mv
mv Mv mU Mv

r r r r
0 0

0
2

0
2 2 2

2 2 2 2

+ − = +

+ = +

⎧
⎨
⎪

⎩⎪
,  (2) 
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где 
r

U  и rv  скорости, соответственно, малого и большого 
шаров после второго столкновения. Строго говоря, в 
вертикальном направлении система не замкнута по 
причине действия силы тяжести. Однако 
кратковременность процесса столкновения делает 
допустимым пренебрежение импульсом силы тяжести за 
время столкновения τ : 

( )m M g mu m+ << +τ υ.    
В проекциях на вертикальную ось (2) примет вид: 

Mv mv mU Mv
mv Mv mU Mv

0 0

0
2

0
2 2 2

− = +
+ = +

⎧
⎨
⎩

.  (3) 

 
Из этих уравнений находим 

U v

v

=
−
+

=
−
+

⎫

⎬
⎪⎪

⎭
⎪
⎪

0

0

3
1

1 3
1

η
η

υ η
η

. ,    (4) 

где η =
m
M

. 

Выражение (4) дает скорости шаров после абсолютно упругого 
соударения шаров разных масс. Предельную высоту подскока 
реализуется в том случае, когда: η→ 0, т.е. m M<< . 

 При этом: 
U v
v v
→
→

⎫
⎬
⎭

3 0

0

.     (5) 

От знака равенства в (5) воздержимся, иначе при этом будет 
нарушаться закон сохранения энергии. 
Далее: 

h U
g

h

h v
g

h

*

**

= →

= →

⎫

⎬
⎪⎪

⎭
⎪
⎪

2

2
2

9

2

,    (6) 

где h* и h** высоты подскоков после соударения, соответственно, 
легкого (m) и тяжелого (M) шаров. 
Выражение (8) не нарушает закона сохранения энергии, т.к. рост h* 
(по сравнению с h) происходит за счет уменьшения h**. Иными 
словами, часть механической энергии большого шара передается 
малому. 
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Эту красивую демонстрацию можно провести с мячиком для 
большого тенниса и шариком от пинг-понга, хотя, конечно же, 
наблюдаемая при этом высота подскока h* меньше предельной 9h. О 
причинах этого подумайте самостоятельно. 
 
33.Силу трения удобно выразить из II закона Ньютона. В проекции 
на ось x запишем 

mg F maтsin ,р.α − =  
откуда 

F mg maтр. sin .= −α  
Для нахождения ускорения воспользуемся законом сохранения 
энергии 

mgh K KП B= + , 

где h S= sinα  – высота, на которую опустилась трубка, K mv
K =

2

2
 – 

кинетическая энергия поступательного движения трубки, KB  – 
кинетическая энергия вращения трубки. Найдем KB . Предположим, 
что ось трубки неподвижна, а сама трубка раскручена до какой-то 
угловой скорости ω . Это означает, что все точки ее поверхности 
движутся с одинаковой по модулю линейной скоростью v . Считая 
трубку тонкой, мы пренебрегаем ее толщиной. Таким образом, все 
участки трубки имеют скорость v . Следовательно, кинетическая 

энергия вращающейся трубки равна K mv
B =

2

2
. Наконец, зная, что 

трубка скатывается без проскальзывания (это означает, что 
линейная скорость частей трубки равна скорости ее 
поступательного движения), мы можем записать 

mgS mv mv mvsin ,α = + =
2 2

2

2 2
 

где S – пройденный трубкой путь. При прямолинейном 
равноускоренном движении, каковым и является скатывание трубки 
с наклонной плоскости, ускорение, скорость и пройденный путь 
связаны соотношением 

v as v2
02 0= =, . 

Имеем 

gS aS a gsin , sin .α α
= =2

2
 

Тогда сила трения равна 

F mg mg mg
тр. sin sin sin .= − =α

α α
2 2
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34.На кольцо A действуют четыре силы: силы натяжения нитей 

r
T1  и 

r
T2 ; реакции со стороны стержня CD – 

r
N ; трения – 

r
Fтр. . Силой 

тяжести кольца мы пренебрегли. 
В случае равновесия кольца имеем: r r r r r
T T N Fт1 2 0+ + + =р. .  (1) 
Спроецируем (1) на горизонтальную и 
вертикальную оси: 
 

F T T
N T T
тр. sin sin

cos cos
.

= +
== +

⎫
⎬
⎭

1 2

1 2

γ α
γ α

 (2)  

  
Поскольку нить легкая, то 

r r
T T T1 2= = .. 

В предельном случае (в момент начала скольжения кольца): 
( ) ( )F N T Tтр. cos cos sin sin .= = + = +µ µ γ α γ α   (3) 

Из (3) получаем: 

µ γ α
γ α

=
+
+

sin sin
cos cos

.     (4) 

так как максимальное значение выражения (4) реализуется при 
γ β= , то предельное значение коэффициента трения между 
кольцом и стержнем: 

µ β α
β α

* sin sin
cos cos

.=
+
+

 

Таким образом, кольцо будет неподвижно, если  
µ µ≥ * .      (5) 

 
35.В данном случае понятно, что первый  «полупериод» колебаний 
груза ничем не будет отличаться от случая отсутствия плиты  

t m
k1 = π .                 (1) 

При движении пружинного маятника 
вниз спустя некоторое время τ  груз 
ударится о плиту и (будем считать 
мгновенно) изменил направление 
скорости на противоположное. На 
графике это соответствует 
«исчезновению» участка синусоиды , 
уменьшающему второй «полупериод» до величины2τ . 
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t t a
A2 1 2 2 1− = = ⎛

⎝⎜
⎞
⎠⎟

τ
ω

arcsin ,    (2) 

где a h l mg
k

= − +⎛
⎝⎜

⎞
⎠⎟

 – расстояние от положения равновесия груза до 

плиты; A v m
k

= 0  – амплитуда колебаний; ω  – циклическая частота 

колебаний. 
Соответственно, период колебаний: 

T
h l mg

k

v m
k

m
k

h l mg
k

v m
k

= +
− +⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= +

− +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

π
ω ω

π
1 2 2

0 0

arcsin arcsin . 

В частном случае, если плита установлена сразу под 

маятником ( )a = 0 , то (3) дает верный предельный переход T =
π
ω

, 

когда «нижняя» часть синусоиды отсутствует и мы имеем дело с 
«выпрямленными» колебаниями. 
Подчеркнем, что, если плита стоит очень низко (a A> ), то удара 

происходить не будет T m
k

=
⎛

⎝
⎜

⎞

⎠
⎟2π . В случае A a=  груз, мягко 

коснувшись плиты, сохранит тот же период колебаний 

T m
k

=
⎛

⎝
⎜

⎞

⎠
⎟2π . 

 
36. Мы должны выяснить, при 
какой амплитуде колебаний 
шара ящик будет неподвижен. 
Сместим шарик на расстояние 
x  от положения равновесия. 
На ящик начнут действовать 
две одинаковые силы упругости пружин kx  . Они действуют в 
одном направлении и их суммарное действие не должно 
превосходить силу трения 

2 2kx F N mg≤ = =тр µ µ .  
Отсюда выражаем граничное значение амплитуды 

x mg
k

g m
k

g
m = = =

µ µ µ
ω 2 . 
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37. Рассмотрим смещение правого конца цепочки 
на величину x  вверх. При этом потенциальная 
энергия системы возрастает на величину: 

∆U m
l

xg x mg
l

x= =2
2

2 .  (1)  

Как видим из (1), ∆U  пропорциональна квадрату 
смещения из положения равновесия, что является 
достаточным условием гармоничности 
колебаний. 
Закон сохранения энергии для движения цепочки: 

mv mgx
l

E
2 2

2
+ =   (2)  

совпадает по форме с аналогичной зависимостью для пружинного 
маятника: 

mv kx E
2 2

2 2
+ = ,     (3) 

где E – механическая энергия осциллятора. Сравнивая (2) и (3), 
получим ответ: 

T m
k

T ml
mg

l
g

= ⇒ = =2 2
2

2
2

π π π .   (4) 

 
38. Выделим малый сегмент жидкости 
с  угловым раствором α , находящийся 
на расстоянии r от оси, толщиной ∆r  и 
высотой h . 
 
 Эта часть жидкости движется по 
окружности с угловой скоростью ω , 
следовательно, уравнение второго 
закона Ньютона для нее примет вид  

( )( )P P r r ah rP h P rh r rh r+ + − − =∆ ∆ ∆ ∆α α ρα ω2
2

2 , 

где P  – давление жидкости на расстоянии r  от оси вращения, 
P P+ ∆  давление на расстоянии r r+ ∆ .Из этого уравнения получим 

∆ ∆P r r= ρω 2 . 
Полагая давление на оси сосуда равным нулю, суммированием всех 
изменений давления ∆Pi  на каждом шаге ∆ri  от 0 до R  находим 
давление на боковую стенку 

P P r r R
i

i
i i

i
= = =∑ ∑∆ ∆ρω ρω2

2 2

2
. 
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39.Обозначим высоту уровня воды в пробирке 
h , а глубину погружения H . Последняя может 
быть найдена из закона Архимеда 

( )ρ ρSh m g SHg+ = , 
( ρ  – плотность воды, S r= π 2  – площадь 
поперечного сечения пробирки), откуда 

H h m
S

= +
ρ

.     (1) 

Ясно, что когда пробирка плавает H l≤  , следовательно, высота 
уровня воды в пробирке должна удовлетворять условию 

h l m
S

< −
ρ

.      (2) 

Чтобы положение плавающей пробирки было устойчивым 
необходимо, чтобы ее центр тяжести находился ниже центра 
тяжести вытесненной воды, который находится на расстоянии H / 2  
от дна пробирки. Высоту центра тяжести h c можно выразить 

h
Sh h m l

Sh mc =
+

+

ρ

ρ
2 2 .  

Тогда условие устойчивости имеет вид 

ρ

ρ ρ

S h m l

Sh m
H h m

S

2

2 2
2

+

+
< = + .   (3) 

Решая это неравенство, получим 

h l m
S

> −
⎛
⎝
⎜

⎞
⎠
⎟

1
2 ρ

.     (4) 

Неравенства (2) , (4) дают область допустимых значений , при 
которых пробирка плавает устойчиво: 

1
2

l m
S

h l m
S

−
⎛
⎝
⎜

⎞
⎠
⎟ < < −

ρ ρ
. 

 
40. Прежде чем приступить к записи уравнений движения 
пластинки, давайте качественно проанализируем причину ее 
остановки. Поскольку (по условию) вода под пластинку не 
попадает, то сила Архимеда (как сумма сил, действующих на грани 
пластинки) из выталкивающей 
превращается в «заталкивающую», 
т.е. прижимает пластинку ко дну. 
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Поскольку сила «прижима» растет пропорционально давлению (т.е. 
глубине), то, по мере движения пластинки, будет возрастать и сила 
трения, которая и остановит дальнейшее движение пластинки. 
Запишем основной закон динамики для данного случая: 

ma F mg N F Fi
i

т Д
r r r r r r
= = + + +∑ р. ,   (1) 

где mgr  – сила тяжести; 
r
N  – сила реакции поверхности клина; 

r
Fтр.  

– сила трения пластинки о клин; 
r
FД  - сила давления воды на 

пластинку («остаток» силы Архимеда); ra  – ускорение пластинки. 
В проекции на ось X: 

ma mg Fт= −sin р.α     (2) 
На ось Y: 

N mg FД= +cos .α     (3) 

Для вычисления 
r
F FД Д=  напомним , что пластина тонкая, т.е. 

силами давления на боковые грани (вследствие малости их 
площади) можно пренебречь: 

F gha ga xД = =ρ ρ α2 2 sin ,  
где x hsinα =  – глубина погружения центра пластинки. Тогда: 

a g g ga
m

x= − −sin cos sinα µ α µρ α2

 . (4) 

Уравнение (4) совпадает с уравнением гармонических колебаний со 
смещенным положением равновесия: 

( )x m
a0 2 1= −

µρ
µ αctg .   (5) 

Это обстоятельство легко позволит нам вычислить искомое время τ  
до остановки пластины как полупериода соответствующего 
колебания: 

τ π
ω

π
µ ρ α

π
µρ α

= = = =
T m

a g a
m

g2 2 sin sin
.  (6) 

Следует подчеркнуть, что приведенное решение справедливо при 
любом малом трении, т.е. в данном случае (см. условие) 
отпущенная без толчка пластина начинает скользить. В случае же 
большого трения пластина может и не сдвинуться с места (τ = 0 ). 
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41. В подобной смеси жидкостей тело любой плотности опуститься 
лишь до некоторой глубины, на которой сила тяжести будет 
уравновешена силой Архимеда. Пусть центр 
шарика находится на глубине h . 

Выталкивающая сила 
r
FA , 

действующая на шар, численно равна весу 
жидкости в вытесненном объеме. Для 
вычисления веса вытесненной жидкости 
мысленно вернем ее обратно и рассмотрим 
два симметричных сечения S Si j,  ( )S Si j=  

толщиной ( )∆ ∆ ∆x x hi i << .  
Данная пара дает вклад в вес жидкости: 
 

( )( ) ( ) ( )
∆ ∆ ∆

∆ ∆ ∆ ∆

P S x g S x g

gS x h h h h h V g

ij
i i i j j i

i

= + =

= + − + + + = +

ρ ρ

ρ α ρ α ρ α0 0 0 0 0 02 ,
         (1) 

где ∆ ∆V S xi i i= . Как видим, вклад тонкой пары пропорционален 
только объему, заштрихованному на рисунке, который легко 
просуммировать 

( ) ( )

( )

P P h V g h g V

V R h g R

ij

ij
i i

i

= = + = + =

= =⎧
⎨
⎩

⎫
⎬
⎭
= +

∑ ∑ ∑

∑

∆ ∆ ∆

∆

2 2

2 4
3

4
3

0 0 0 0

3
0 0

3

ρ α ρ α

π ρ α π ,
 

где суммирование производится по всем парам i j,  . 
Теперь легко найдем минимальную массу шарика при которой он 
полностью погрузится в жидкость (h0=R): 

( ) ( )m R R R R* .= + = +ρ α π π ρ α0
3 3

0
4
3

4
3

   (2) 

Таким образом, условие задачи будет выполнено при: 
m m≥ * .    (3) 

В противном случае шарик будет плавать, частично выступая из 
жидкости. 
Заметим, что подобную гидросистему можно смоделировать, 
аккуратно залив слой соли водой. Вследствие диффузии (через 20-
30 часов) концентрация соли будет падать с высотой. Если в такой 
раствор опустить куриное яйцо, то оно зависнет (в соответствии с 
решением) «между небом и земле». 
 
42. Напишем уравнение теплового баланса для теплообмена при 
первом погружении шарика в воду. 
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( ) ( )C t t C t tш1 0 1 1− = − . 
Отсюда находим установившуюся температуру 
 

( )t C t Ct
C C

C t Ct Ct Ct
C C

t C
C C

t tш ш ш ш
ш ш1

1 0

1

1 0

1 1
0=

+
+

=
+ − +

+
= +

+
− . 

Уравнение теплового баланса при втором погружении  
( ) ( )C t t C t tш2 1 1 2− = − , 

или 

( )
( )

( )t C t Ct
C C

t C
C C

t t t C
C C

t tш
ш ш ш ш2

1 1

1 1
1

2

1
2 0=

+
+

= +
+

− = +
+

− . 

Проделав аналогичные действия при третьем погружении шарика в 
воду. подтверждаем наличие закономерности в выражении для 
температуры теплового равновесия 

( )
( )t t C

C C
t tш ш3

3

1
3 0= +

+
− .  

Итак, после n погружений 

( )
( )t t C

C C
t tn ш

n

n ш= +
+

−
1

0 .  

 
43.Ошибка в измерении температуры возникает вследствие того, 
что термометр имеет собственную теплоемкость C1  и его начальная 
температура t1  меньше, чем температура воды в сосуде t0 . 
Следовательно, какая-то часть теплоты пойдет на нагревание 
термометра, что приведет к уменьшению температуры воды. Пусть 
установившаяся температура после того, как в воду опустим 
термометр равна ( )t t0 − ∆ , тогда уравнение теплового баланса имеет 
вид 

( )C t C t t t0 1 0 1∆ ∆= − − .     (1) 
Отсюда 

( )
∆t

C t t
C C

=
−

+
1 0 1

0 1

. 

Эта величина и определяет ошибку измерения 
∆t Co≈ 0 8, .  

 
44.  Считаем, что лед плавает, тогда масса вытесненной воды 
m г= 200 . Пусть масса свинца во льду mсв  , масса чистого льда m1 . 
Уравнение теплового баланса 



 36

( )( ) ( ) ( )c m m t m c t c m c tв в в л л л в св св л− − = − + + + −θ θ λ θ  , 
где c c cв л св, ,  - удельные теплоемкости воды, льда и свинца, t tв л,   - 
начальные температуры воды и льда, θ  - установившаяся 
температура. Из этого уравнения находим с учетом m m mсв= +1 ,  

 

m m c t c с m m t
с t с t с с

кгсв
л л в в в в

л л св л в св

=
− + + − − −

− + + −
≈

( ) ( )( )
( )

,λ θ θ
λ θ

0 018 . 

 
Тогда  m кг1 0 182= , . Зная плотности льда и свинца, легко найти 
объемное содержание свинца во льду 

η ρ
ρ ρ

=
+

≈
m

m m
св св

св св в

/
/ /

,
1

0 8%. 

 
Покажите самостоятельно, что при таком содержании свинца лед 
действительно будет плавать и, следовательно, наше изначальное 
предположение верно.  

Отметим, что если бы лед утонул, то была бы вытеснена 
другая масса воды, равная произведению плотности воды на объем 
льда со свинцом. 
 
45. С точки зрения теплового баланса условие установления 
температуры воды в стакане означает, что суммарные тепловые 
потери в системе (через стенки, дно, свободную поверхность 
жидкости) равны количеству теплоты, производимому 
нагревателем. 
На «языке» мощностей это можно записать следующим образом: 

P Pн п= ,    (1) 
где Pн  – мощность нагревателя, Pп  – мощность потерь. 
Мощность потерь Pп  зависит от размеров стакана, его 
теплопроводных свойств, разности температур стакана и воздуха, 
т.е. возрастает по мере нагревания воды. Иными словами, для 
каждого конкретного случая существует минимальное значение 
мощности нагревателя, доводящего жидкость в сосуде до кипения. 
После выключения нагревателя ( )P Pн п= 0  сохраняет свое 
значение (считаем, что температуры не успели существенно 
измениться, т.е. для искомого времени τ  справедливо равенство: 

P cm T cm T
P

cm T
P

cп
п н

⋅ = ⇒ =
⋅

= =τ τ∆
∆ ∆ 17 , (2) 
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где с = ⋅
⋅

4 22 10 3, Дж
кг к

 – удельная теплоемкость воды. 

При получении (2) мы пренебрегли теплоемкостью самого 
нагревателя, считая, что она гораздо меньше теплоемкости воды. 

В заключение заметим, что величина  может быть 
определена из графика зависимости температуры воды от времени, 
т.к. она пропорциональна тангенсу угла наклона касательной к оси 
абсцисс в данной температурной точке (см.задачу 9-3, 
Витебск,1990). 
 
46. Как указано в условии, брошенный кусочек льда становится 
центром кристаллизации, стимулируя интенсивный процесс 
образования льда. При этом выделяющаяся теплота идет на 
нагревание оставшейся воды до температуры  00С. Таким образом, 
составим уравнение теплового баланса 

  m m c t1 2λ = ∆   , 
где  m1  - масса образовавшегося льда (массу брошенного 
кристаллика не учитываем), m2  - масса оставшейся воды. Отсюда, 
учитывая , что первоначальная масса воды в сосуде m m m= +1 2 , 
получаем 

m
m

c t
c t

2 0 06=
+

≅
∆

∆ λ
, . 

 
47. При решении задачи будем считать, что рассеиваемая мощность 
практически не меняется при остывании от 95 оС до 90 оС. Тогда 
количество теплоты, полученное водой при нагревании: 

( )P P Q0 1 1− =τ ,     (1) 
где P0  – полезная мощность нагревателя; P1  – мощность потерь при 
данных условиях; τ1  – время нагревания. При остывании: 

P Q1 2τ = ,     (2) 
где τ 2  –время остывания. 
Тогда 

P
P

1

0

1

1 2

0 1 10=
+

= =
τ

τ τ
, %.  

 
48. Поскольку сосуд теплоизолирован и герметичен, то при горении 
углерода (или любом другом процессе) будет справедлив закон 
сохранения энергии и массы. Пользуясь уравнением состояния 
идеального газа в форме Менделеева – Клайперона, найдем массу 
кислорода в сосуде: 
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m
PV

RTO
O

2

20

0

=
µ

, 

где µO2
 – молярная масса кислорода, P0  и T0  – значения давления и 

температуры при нормальных условиях. 
m кгO2

1 4= , . 
Учитывая уравнение химической реакции горения углерода, 
определим массу сгоревшего углерода: 

C O CO2 2+ = ⇒ =m mC O
C

O
2

2

µ
µ

 

где µC г моль= 12 / – молярная масса углерода m PV
RT

кгC C= =µ 0

0

0 53, , 

т.е. выгорит не весь порошок, но в ходе горения расходуется весь 
кислород. 
Согласно закону сохранения энергии можем приравнять исходную 
внутреннюю энергию кислорода и освобожденную при горении 
теплоту к внутренней энергии образовавшегося углекислого газа: 

5
2

5
2

5
20 0

0

0

ν ν ν µ ρRT RT qm RT q V
RTC
C= + = + .  (1) 

Заметим, что в обеих частях (1) стоит равное количество вещества, 
т.к. взамен ν  молей кислорода образовалось ν  молей углекислого 
газа (см. уравнение химической реакции) 

ν νC O
PV
RT

= =
2

0

0

. 

Окончательно получим: 

T T
q

R
КC= + ≈ ⋅0

42
5

1 9 10
µ

, .   (2) 

Следует заметить, что мы пренебрегли теплоемкостью сосуда и 
оставшегося в нем графита. Учет этих факторов незначительно 
уменьшит значение (2).  
 
49. При стопроцентной влажности число молекул, вылетающих из 
поверхности воды, равно числу молекул воды, попадающих из 
воздуха. Влажность воздуха пропорциональна парциальному 
давлению водяных паров, поэтому  количество молекул, 
попадающих из воздуха в воду, пропорционально влажности ϕ . Так 
как количество молекул, попадающих на поверхность воды зависит 
только от температуры, то скорость испарения (разность между 
числом вылетевших и числом «вернувшихся» молекул) 
пропорциональна величине ( )1−ϕ , следовательно время высыхания 
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τ
ϕ~ ,1

1−
 

Или 
τ
τ

ϕ
ϕ

1

0

0

1

1
1

=
−
−

,     (1) 

где τ τ0 1,  – времена высыхания при влажности ϕ ϕ0 1, , 
соответственно. Из (1) находим 

τ τ ϕ
ϕ1 0

0

1

1
1

4=
−
−

=  часа. 

 
 
50. Степень диссоциации α = aT , тогда число частиц при 
T K< 900 равно N N A= +( )1 α ν ,   ν = 2 моля.  Концентрация частиц 

( )n
N

V
A=

+1 α ν
 , 

 а давление  
( ) ( )p nkT

RT
V

aT RT
V

= =
+

=
+1 1α ν ν

   

 при  T K< 900 ,   

p RT
V

= 2ν  при T K> 900 .  

Схематический график зависимости давления в 
зависимости от температуры приведен на 
рисунке. Обратите внимание на излом графика 
в точке T K= 900 , объясните его появление. 
51. Среднее число ударов молекул о внутреннюю поверхность 
баллона за время ∆t равно числу молекул, которые долетят до 
поверхности баллона за это время, а это, в свою очередь, равно 
числу молекул в объеме v tS∆ . За единицу времени число ударов 
будет равно    

ν
π

π= = =
1
4

1
4 4

3

4 3
43

2nvS N

R
v R N

R
v,   (1) 

где n N
V

=  – концентрация молекул, N  – общее число молекул в 

сосуде, V R=
4
3

3π  – объем сосуда, S R= 4 2π  – площадь его 

поверхности, υ  - средняя скорость теплового движения молекул. 
Коэффициент 1/4 учитывает долю молекул в выделенном объеме, 
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которые летят по направлению к стенке. Вместо  1/4 можно 
использовать более привычный в школьных курсах коэффициент 
1/6, что принципиальным образом не меняет решение задачи. 
Среднее число ударов одной молекулы 

ν ν
1

3
4

= =
N

v
R

, 

Следовательно, среднее время между ударами 

τ
ν

= =
1 4

31

R
v

. 

Отметим, что эта величина не зависит от числа молекул в сосуде и, 
по порядку величины, равна времени свободного пролета от одной 

точки поверхности до диаметрально противоположной 2R
v

. 

Конечно, увеличение плотности газа в сосуде приводит к 
увеличению числа столкновений молекул между собой, однако это 
обстоятельство не сказывается на среднем числе ударов выбранной 
молекулы о стенку. Т.к. те молекулы, которые изначально были 
расположены ближе к стенкам, будут ударятся чаще тех, которые 
находились ближе к центру, в среднем же результат от числа 
молекул не зависит. 
 
52. Число молекул, вылетающих из отверстия за время τ  равно 

∆N N
V

vS=
1
4

τ  (см. решение задачи 51) . Так как  

∆ ∆p
p

N
N

= = =η 0 01, , то  η τ
=

vS
V4

.  

Отсюда    τ η η π µ
= = ≈

4 4
8

90V
Sv

V
S RT

c . 

 
53.Поскольку мембрана «прозрачна» для гелия, то после 
установления равновесия он займет весь сосуд, причем его 

парциональное давление упадет вдвое и станет равным P0

2
.  

Согласно закону Дальтона в одной половине сосуда (где 

содержится только гелий He) давление будет P0

2
, а в другой 

(He+N2) 
3

2
0P  . Тогда искомая разность 

∆P P= 0 . 
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Можно было рассуждать и иначе: в конечном состоянии действие 
гелия можно не учитывать, т.к. он займет весь сосуд и будет давить 
на мембрану с обеих сторон. А вот азот будет по-прежнему давить 
на мембрану: ∆P P= 0 . 
 
54.Поршень будет двигаться сначала ускоренно, а затем 
замедленно. Скорость будет максимальна, когда ускорение 
обратится в нуль, т.е. когда поршень пройдет через положение 
равновесия. Это условие есть условие равенства сил давления и 
силы тяжести. 

pS mg= .     (1) 
Поскольку процесс подъема поршня до положения равновесия 
проходит достаточно быстро, мы можем при решении задачи не 
учитывать теплообмен между газом и окружающим пространством. 
Запишем закон сохранения энергии 

K P U U+ + = 0  
где K и P – кинетическая и потенциальная энергии поршня, U и U0  
– конечная и начальная внутренние энергии газа. Или 

mv mgh RT RT
2

02
3
2

3
2

+ + =ν ν .   (2) 

Используем уравнение Менделеева – Клапейрона для начального и 
конечного состояний газа 

( )PV P Sl RT PV PS h l RT0 0 0 0= = = + =ν ν, .  (3) 
Подставляем (1) и (3) в уравнение (2) 

( )mv mgh mg h l P Sl
2

02
3
2

3
2

+ + + = . 

Отсюда находим искомую скорость 

( )v
P Sl
m

g h l= − +
3

5 30 . 
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55.Сделаем схематический рисунок нашей установки. Установка 
совершает суммарную работу за цикл A A A= +1 2 , где A1  – работа 

за цикл рабочего тела первой машины, а A2  – 
работа за цикл рабочего тела второй машины. По 
определению КПД. 

η = =
+

= +
A

Q
A A

Q
A

Q
A

QH H H H1 1 1 1

1 2 1 2 . 

Для первой машины КПД  равен 

η1
1

1

=
A

QH

. 

Для второй соответственно 

( )
η

η2
2 2 2

11 1 1
1

= = =
−

A
Q

A
Q

A
QH X H

. 

Отсюда 

( )A
QH

2
2 1

1

1= −η η .. 

Тогда окончательное выражение для КПД всей 
системы 

η η η η η= + −1 2 1 2 , 
что говорит о повышении эффективности использования 
двигателей в сопряженной системе. Причем от порядка следования 
двигателей этот КПД не зависит. 

 
56.Согласно определению КПД:   

η =
A

Q1

, (1) 

где A  – работа, совершенная идеальным 
газом за цикл, Q1  – количество теплоты, 
полученное рабочим телом от нагревателя. 
В данном случае точки 1 и 3 лежат на 
одной прямой, т.е.: 

( )P V
P V

P P V V P
= ⇒

=
= = = =

⎧
⎨
⎩

α
α
α α

1 1

2 3 1 1 12 2 2
,

 
т.е. в течение процесса давления возрастает также в 2 раза. 
Работа газа за цикл равна площади заштрихованного 
прямоугольника: 

( )( )A V V P P PV= − − =2 1 2 1 1 1 .    (2) 
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Из графика видим, что нагреватель подключился в точке 1 цикла, а 
отключился в точке 3. На остальных участках цикла рабочее тело 
контактировало с холодильником. Таким образом: 

Q Q Q1 12 23= + .     (3) 
Согласно первому началу термодинамики: 

( ) ( )Q U A R T T R T T12 12 12 2 1 2 1
3
2

0 3
2

= + = − + = −∆ ν ν , (4) 

где ν  – количество вещества идеального газа. Аналогично: 

( ) ( )Q R T T P V V23 3 2 2 3 2
3
2

= − + −ν .     (5) 

Пользуясь (3) – (5) получаем: 

( ) ( )Q R T T PV
PV RT
PV RT

PV PV PV PV1 3 1 1 1
1 1 1

2 2 3
2 2 1 1 1 1 1 1

3
2

2 3
2

2 13
2

= − + =
=
=

⎧
⎨
⎩

⎫
⎬
⎭
= − + =ν

ν
ν

.

 
Окончательно: 

η = = =
PV

PV
1 1

1 1
13
2

2
13

15%.     (6) 

Как видим из (6) η  достаточно мал и примерно соответствует 
значению КПД паровых машин. Хотелось бы обратить внимание на 
методику поиска участков цикла с работающим нагревателем. В 
случае «прямоугольного» цикла это несложно: точка T3  
соответствует максимальной температуре цикла, и в этом состоянии 
отключается нагреватель. Если же цикл более сложен, например, 
«круговой», то для отыскания соответствующих точек отключения 
нагревателя необходимо искать точки касания цикла с адиабатами 
( )PV γ = const , что представляется более сложным и громоздким. 
 
57. Известно, что работа равна площади цикла, изображенного в 
координатах ( P V, ), т.е. площади 
треугольника в нашем случае 

( )( )A P P V V= − −
1
2 2 1 3 1 . 

Воспользуемся тем, что треугольник 
равнобедренный, а точки 2 и 3 лежат на 
одной изотерме. 

V
V V

T T T P
RT
V

R T
V V2

1 3
2 3 0 2

2

2

0

1 32
2

=
+

= = ⇒ = =
+

, .η
η

 

Подставим P2  в выражение для работы 
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( ) ( )A RT
V V

P V V RT
P V V V V

V V
=

+
−

⎛
⎝
⎜

⎞
⎠
⎟ − = −

+⎛

⎝
⎜

⎞

⎠
⎟

−
+

1
2

2
2

0

1 3
1 3 1 0

1 1 3 3 1

3 1

η η . . 

 
Из уравнения состояния идеального газа 
 

( ) ( )
PV RT

PV RT RT
V V V V V V V V1 1 0

1 3 3 0
3 1 3 1 1 3 1 11 1

=
= =

⎧
⎨
⎩

⇒ = − = − + = +
η

η η η, , . 

 
Тогда 
 

( ) ( ) ( )
( )

A RT
PV

RT
RT

RT= −
+⎛

⎝
⎜

⎞
⎠
⎟

−
+

= −
+⎛

⎝
⎜

⎞
⎠
⎟

−
+

=
−
+

η
η η

η
η

η η
η

η
η0

1 1
0

0
0

21
2

1
1

1
2

1
1

1
2 1

.

 
 
58. Так как при адиабатном процессе 
теплообмен отсутствует, то на участке 2 
вначале газ получает теплоту, а затем ее 
отдает. Найдем зависимость количества 
полученной газом теплоты Q  от его 
объема V , при увеличении последнего от 
V0  до 2 0V . По первому закону 
термодинамики 

( )Q U A R T P P V V= + = +
+

−∆ ∆3
2 2

0
0 , (1)   

где ∆ ∆U R T=
3
2

 – изменение внутренней энергии газа, A  – работа 

совершенная газом. Так как давление изменяется по линейному 
закону, то работа легко вычисляется как площадь соответствующей 
трапеции под графиком функции P V( ) . Уравнение прямой AB 
может быть записано в виде 

( )P P P P
V

V V= −
−

−0
0 1

0
0 .     (2) 

Учитывая так же уравнение состояния идеального газа PV RT= , 
величину Q V( )   можно  выразить: 

( )Q V
P P P P

V
V V

∆
∆ ∆

=
+ −

−⎛
⎝
⎜

⎞
⎠
⎟2 3 4

2

0 1
0 1

0 ,   (3) 
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где ∆V V V= − 0 . Эта функция имеет максимум при 

( )
∆V P P

P P
V* .=

+
−

2 3
8

0 1

0 1
0  

Следовательно, до такого значения приращения объема  газ 
получает теплоту, а затем ее отдает. Таким образом, количество 
полученной теплоты 

( ) ( )
( )

Q Q V
P P

P P
V1

0 1
2

0 1
0

2 3
32

= =
+
−

∆ * .   (4) 

 
Разность между полученной и отданной теплотами есть работа, 
совершенная за цикл, которую можно подсчитать, положив в (3) 
∆V V V V= − =2 0 0 0  

A P P V=
−7 2
2

1 0
0 . 

Тогда находим коэффициент полезного действия 
 

( )( )
( )

η = =
− −

+
≈

A
Q

P P P P

P P1

1 0 0 1

0 1
216

7 2

2 3
0 26, . 

 
59. Шарик 1 находится в равновесии под действием двух сил: r r r

T Fk1 1 0+ = ,       (1) 
где 

r
T1  – сила натяжения нити, 

r
Fk 1  – равнодействующая 

кулоновских сил, действующая на шарик 1 со стороны остальных.  

 
Согласно принципу суперпозиции полей: 

T q
l

q
l1

0

2

2
0

2

2

1
4

1 1
4

1
9

49
144

1
= + +⎛

⎝⎜
⎞
⎠⎟
=

πε πε
.    (2) 

Аналогично записывая условие равновесия шара 2, получаем: 

T T q
l

T T

3 2

2

0
2

2 1

4
1

4
− =

=

⎧
⎨
⎪

⎩⎪
πε .     (3) 

Из (3) найдем T q
l3

2

0
2

58
144

=
πε

.  
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Таким образом,    T
T

3

1

58
49

= . 

60. Поскольку плоскость гладкая и заряды все одного знака, то под 
действием кулоновских сил они начнут разъезжаться «в разные 
стороны». Так как заряды взаимодействуют только между собой (в 
плоскости движения), то положение центра масс системы не может 
измениться. 

Построением  определим 
положение центра масс системы – 
точки О. При этом (по определению 
центра масс двух точек): 

AB
AC

=
2
1

; AO
OD

=
1
1

. 

Повторяя аналогичные 
построения в прежних пропорциях 
для известных точек B’ и  C’ легко 
найдем местоположение груза 3m  – D’. При этом: 

A B
A C

A O
OD

' '
' '

;
'

'
= =

2
1

1
1

. 

Интересно, что ответ не зависит от величин зарядов – главное, 
чтобы они были одного знака. В этом случае треугольник будет 
«расти». Убедитесь самостоятельно, что треугольники СДВ и 
C’B’D’ подобны и разбегание зарядов реализуется таким образом, 
что соответствующие стороны вышеуказанных треугольников 
остаются параллельными. 
 
61. Вследствие явления электростатической индукции на ближнем 
шарике 1 появится заряд противоположного знака  − q' ,  а на 
дальнем шарике 2 — заряд того же знака + q' . Причем согласно 
закону сохранения заряда в 
изолированной системе q q' '= − ,  
так как изначально шарики были 
не заряжены. 
Перераспределение зарядов (т. е. электрический ток) прекратится, 
когда исчезнет напряжение (т. е. разность потенциалов) между 
шариками:    

ϕ ϕ1 2=       (1). 
В соответствии с принципом суперпозиции : 
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ϕ
πε

ϕ
πε

1
0

2
0

1
4
1

4

= − +⎛
⎝⎜

⎞
⎠⎟

=
+

+ −⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

q
l

q
r

q
a

q
l a

q
r

q
a

' ' ,

' ' .
            (2) 

 
Из (1)-(2) получаем: 

( ) ( ) { } ( )
q q a r

l a l a r
r a q ar

l l a
' =

+ −
≈ << ≈

+2 2

2

.       (3) 

Как видим из (3), q'→ 0  при l → ∞ , т. е. при удалении заряда q  
явление электрической индукции исчезает. Аналогично q'→ 0  при 
сближении шариков , так как при этом выравнивается их 
«внешний» потенциал. 

При решении задачи мы не учитывали электроемкость 
тонкой проводящей нити, на которой тоже окажутся некоторые 
индуцированные заряды. 
 
62. Необходимым и достаточным условием возможности колебаний 
в системе является наличие положения устойчивого равновесия. 
Пусть бусинка находиться на расстоянии x  от 
центра кольца. Силу электрического 
взаимодействия бусинки с кольцом можно 
найти с помощью принципа суперпозиции, 
разбивая кольцо на маленькие заряженные 
участки и суммируя затем проекции на 
направление оси кольца сил взаимодействия 
бусинки со всеми участками кольца  

( )
F qQx

x R
=

+4 0
2 2 3 2

πε
/  .  (1)  

Точкам равновесия соответствует условие 

( )
mg F qQx

x R
= =

+4 0
2 2 3 2

πε
/  .    (2) 

Непосредственное решение этого уравнения затруднительно, 
однако оно нам и не требуется, достаточно выяснить при каких 
значениях параметров оно существует. Перепишем (2) в виде 
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( )
a mg

qQ
f x x

x R
= = =

+

4 0

2 2 3 2

πε ( ) /  .   (3) 

Функция f x( )  непрерывна, 
нечетна, при x → ±∞ , 
f x( )→±0 , кроме того при 
x f x= =0 0, ( ) .   
Схематический график этой 
функции изображен на 
рисунке. Найдем точки 
экстремумов x *  из условия f x' ( *) = 0  

( )
′ =

−

+
f x R x

x R
( ) ./

2 2

2 2 5 2
2  (4)     

Откуда находим 

x R∗ = ±
2

, 

и значения f x
R

( )∗ = ±
2

3 3 2
 . 

Таким образом уравнение (3) будет иметь решения (причем 
два корня!) при 

4 2
3 3

0
2

πε mg
qQ

f x
R

< =∗( ) , 

то есть при 

 q R mg
Q

>
6 3 0

2πε .     (5) 

Выясним, есть ли среди этих двух положений равновесия хотя бы 
одно устойчивое. 

Пусть заряды q  и Q  имеют одинаковые знаки. Тогда 
решения уравнения (3) x1  и x2  положительны. Заметим, что с 
точностью до постоянного положительного множителя f x( )  есть 
сила, действующая на шарик вверх, a — сила, действующая вниз. 
Рассматривая силы при малом отклонении от точки x1  замечаем, 
что при x x> 1электрическая сила перевешивает силу тяжести, а при 
x x< 1  ситуация обратная. Следовательно, точка x1  — положение 
неустойчивого равновесия. Аналогичное рассмотрение сил вблизи 
точки x2  приводит к выводу, что это положение равновесия 
устойчиво. 
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При разных знаках зарядов устойчивым оказывается 
положение равновесия в точке x1 . 

Таким образом, при выполнении условия (5) в системе 
существует устойчивое положение равновесия и, следовательно, 
возможны колебания бусинки. 
 
63. Поскольку радиус шара больше радиуса кольца, то для 
выполнения условия задачи он должен растянуть кольцо силами 
кулоновского взаимодействия. Пусть в результате необходимого 
взаимодействия кольцо растянулось до радиуса R1  , тогда на 
единицу его длины приходиться заряд: 

λ
π

=
Q
R2 1

, 

где Q  — заряд кольца. 
Рассмотрим малый элемент кольца ∆ ∆l l R( )<< 1 с угловой 

величиной 2α  . На него действуют 
кулоновские силы 

r
Fi , которые 

уравновешиваются силами упругости в 
растянутом кольце: (в проекции на 
вертикальную ось): { }r r

T T T1 2= =  

2 1
4 0 1

2T l Q
R

шsinα
πε

λ
=

⋅ ⋅∆ . (1)  

  
Записывая (1), в силу малости∆l , мы приняли, что все вектора

r
Fi  

параллельны оси X . Кроме того, здесь  мы учли, что поле шара с 
зарядом Qш  эквивалентно полю точечного заряда, расположенного 
в точке O . 

Согласно закону Гука: 
T k l k R R= = −∆ 2 1 2π( ),     (2) 

где k  — коэффициент упругости кольца. 
Кроме того, в силу малости ∆l : 

sinα α≈ =
∆l
R2 1

 .    (3) 

С учетом (2) и (3) выражение (1) перепишется в виде: 

   
( )

( )

2 2
2

1
4 2

16

1 2
1 0 1 1

2

3
0 1 2 1

2

k R R l
R

Q
R

lQ
R

Q
R R R
Q

k

ш

ш

π
πε π

π ε

− =

=
−

∆ ∆

. (4) 
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Подчеркнем, что сам механизм прохождения шара сквозь 
кольцо мы не обсуждаем. Выражение (4) дает лишь необходимое 
условие этого процесса. 
 
64.  Движение бруска происходит под действием четырех сил: 

ma mg qE N Fт
r r r r r
= + + + р  ,  (1)  

где 
r
N  — сила реакции опоры (призмы), 

r
Fтр  — сила трения со 

стороны призмы. Следовательно, векторная сумма  сил ( )− +
r r
N Fтр  

—  приложена к призме и вызывает ее движение с ускорением, 
определяемом уравнением: 

( )Ma N F N Mgт
r r r r r

0 0= − + + +р , 

где 
r
N0 - сила реакции опоры, а 

Mgr - сила тяжести призмы. 
Учитывая, что движение бруска 
сложное (вместе с призмой и вдоль 
по ней), представим его ускорение 
в виде векторной суммы  
r r ra a a= +0 1 ,      (2) 

где ra0  — ускорение призмы, ra1  — 
ускорение вдоль призмы. 
Проецируя  уравнение (1) на ось  
Y , получим 
 

ma mg qE N0 sin cos sinα α α= + −  .                        (3)    
Для призмы (в проекции на горизонтальную ось): 

Ma N F ТР0 = +sin cosα α  .                         (4) 
Кроме того, учтем, что: F Nтр. = µ . 
Из (3) получим: 

N mg qE ma= + −cos sin sinα α α0 .     (5) 
Тогда с учетом (4) 

( )( )
( )

a
qE mg

M m0 =
+ +

+ +
sin cos sin cos

sin sin cos
.

α α α µ α
α α µ α

         (6) 

 
В случае предельного перехода ( )α → 0  из (6) получаем хорошо 
известный результат: 

a mg
N0 =

µ , 
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а при α π→ / 2  получаем также вполне реальный предельный 
переход: 

a qE
M m0 = +

, 

так как в этом случае движущей силой является не сила трения, а 
сила электростатического действия. 

  
65. Шарик движется в поле двух постоянных сил: тяжести mgr  и 
электростатической qE

r
. Их сумма 

r
F ∗  также постоянна и равна  

( ) ( )F mg qE∗ = +2 2  

Направлена эта сила под углом α к вертикали, tg qE
mg

α = . Для 

минимальной силы натяжения нити в 
точке В, чтобы шарик мог двигаться 
по окружности должно выполняться 

условие mv
l

F
2

= ∗  , где  v  - 

минимально возможная скорость в 
точке В. Для того, чтобы найти 
скорость в точке А, воспользуемся 
законом сохранения энергии  

( )mv mv F lA
2 2

2 2
1= + −∗ cosα . 

Из записанных уравнений получим 
 

( ) ( )v l
m

mg qE glA = + −3 22 2 . 

 
66. Электроны, пройдя ускоряющую разность потенциалов, 
попадают на уединенный шарик, который приобретает 
отрицательный заряд. Этот заряд создает электрическое поле, 
отталкивающее новые налетающие электроны. Частицы будут 
долетать до поверхности шарика, пока кинетическая энергия, 
приобретаемая ими в процессе разгона, не станет равной 
потенциальной энергии элементарного заряда на поверхности 
шарика. Таким образом шарик зарядиться до потенциала −U  
численно равного ускоряющему потенциалу. Теперь нетрудно, зная 
емкость единенного шара 

C R= 4 0πε , 
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определить и заряд шарика 
Q UC RU= − = −4 0πε . 

 
67. Капелька разорвется на части, если давление электрического 
поля на поверхностные заряды превысит лапласовское давление. 
Как известно, давление электрического поля Pe  на поверхностные 
заряды на проводнике равно плотности энергии поля 

P E Q
Re = =

⎛
⎝
⎜

⎞
⎠
⎟

ε ε
πε

0
2

0

0
2

2

2 2 4
,     (1) 

а лапласовское давление под сферической поверхностью 

P
R1

2
=

σ .     (2) 

Приравнивая (1) и (2), найдем минимальный заряд капли, при 
котором последняя разорвется 

Q R
R

= 8 0
2

0

πε σ
ε

.  

 
 
68. Как известно, напряженность поля в диэлектрике E  в  ε  раз 
меньше напряженности поля в вакууме E0  (если силовые линии 
перпендикулярны границе раздела, что выполняется в данном 
случае) 

E E= 0
ε .     (1) 

 
Это уменьшение напряженности поля обусловлено 
поляризационными зарядами, индуцированными на поверхности 
диэлектрика. Пусть поверхностная плотность индуцированных 
зарядов σ' , тогда напряженность поля в диэлектрике можно 
представить в виде 

E E= +0
0

σ
ε

' ,     (2) 

где σ ε'/ 0  — напряженность поля создаваемоãî поляризационными  
зарядами. Разность потенциалов U  между обкладками 
конденсатора можно представить в виде 

U E d E d
= +

2 20 .    (3) 

Решая совместно (1)-(3), получим 
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σ ε
ε

ε' = −
−
+

⋅
1
1

2 0U
d

. 

 
Знак “минус” указывает, что поле индуцированных зарядов 
направлено противоположно породившему его полю (см. также 
задачу 10-4, Лида,1995). 
 
 

69. Данная задача почти полностью повторяет задачу 10-5 
Республиканской олимпиады 1996 года, Поэдому в данном случае 
ограничимся приведением ответа  

R a
S

R=
+
+

≈2 1 2
5 3 2

0 37 1ρ , .  

70.Ток через гальванометр отсутствует, если потенциал точки С 
равен потенциалу точки между резисторами R1  и R2 . Это условие 
выполняется, если  

R
R

l
l

1

2

1

2
= . (1)  

  
Кроме того, в условии 
оговорено, что стержень 
слабопроводящий, поэтому 
можно пренебречь током через стержень по сравнению с током 
через резисторы. Поэтому 

I R R U( )1 2+ =     (2), 
где  I  и U  - показания амперметра и вольтметра соответственно. Из 
уравнений (1) и (2) находим 
 

R U
I

l
l l

R U
I

l
l l1

1

1 2
2

2

1 2

=
+

=
+

, . 

71. Сопротивление цепи в первом случае  
R R R R1 2 3 2= + =/ /  , 

мощность 
P U R U R1

2
1

22 3= =/ / / .  
После перегорания спирали 3 соответственно  

R R2 2=  и P U R2
2 2= / .  

Тогда изменение мощности  
∆P P P U R= − = −2 1

2 6/ ,  
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а ее относительное изменение ∆P P/ /1 1 4= − , т.е. мощность 
нагревательной батареи уменьшится на 25%. 
 
72.Так как максимальный то к через проволоку в n I I= =/ 0 5  раз 
меньше расчетной силы тока I , наш резистор будет состоять из n  
параллельных проводов. Их суммарное сопротивление равно Rt  и 
рассчитывается по формуле 

1

1R
n
Rt

= . 

Отсюда R R nt1 = , и мы можем рассчитать требуемую длину 
проволок для изготовления резистора            

l R r R n rt1 1= =/ / . 
Суммарная длина проволоки в n  раз больше 

( )L nl n R r I I R r мt t= = = =1
2

0
2 250/ / /  

 
73.Сопротивление миллиамперметра RA  очень мало по сравнению с 
сопротивлением резисторов R1 , R2  и 
вольтметра RV , поэтому при расчетах токов в 
таких цепях им можно пренебречь. Зная 
напряжение на вольтметре (а значит и на R1 ) 
можно рассчитать полный ток I1  

I U
R

R R R
R R

I U R R
R RV

v
V

V

V

V
1

1

1
1

1

1
1

1 1

1

= =
+

⇒ =
+, ( ) . 

Напряжение на клеммах U 0  получаем по закону Ома 
U I R RV0 1 1 2= +( ) . 

Если вольтметр подсоединить ко второму резистору, то сила тока в 
цепи  

I U R R I R R
R R

U
R

R R
R R

R R R
R RV

V

V V

V

V
V

V

V
2 0 2 1 1

1 2

2 1

1

1

1 2

2 1
2

2

2

= + =
+
+

=
+
+

=
+

/ ( ) , . 

 
74. Данная схема не может быть рассчитана по стандартным 
методикам для композиции последовательного и параллельных 
соединений, поэтому мы воспользуемся методом эквивалентных 
потенциалов. 
Действительно, легко заметить что ось ОО’ является осью 
симметрии данной 
схемы, т.е. пары 
симметричных точек В и 
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А, С и D будут иметь одинаковые потенциалы 
 

ϕ ϕ ϕ ϕB A C D= =;  
Данный факт позволяет нам без ущерба для схемы соединить 
указанные точки и привести цепь к эквивалентному виду, легко 
поддающемуся расчету 

R R R R R R0 2 4 2 5 4 1 25= + + = =/ / / / , , 
где R0  - искомое сопротивление цепи, R  - сопротивление одного 
звена. 

 
75. Согласно закону Ома при разомкнутом ключе К имеем 

I U
R r

=
+1

 ,                (1) 

где I  - сила тока в цепи,  r  - 
сопротивление амперметра. Из (1) 
следует 

r U
I

R Ом= − ≅1 0 2, . 

Таким образом r R r R<< <<1 2,  и при замыкании ключа показания 
амперметра практически меняться не будут. Иными словами, 
шунтировать амперметр необходимо малыми сопротивлениями, 
сравнимыми по величине с r . 
 
76. Число лампочек можно найти как N U U N= 0 / ,  где U N  - 
номинальное напряжение на лампочке, U0  - напряжение сети. 
N = 37  ( с округлением в большую сторону ). Ток в цепи 

I U

N U
I

A
N

N

= = <0 0 198 0 2, , . 

Параллельное подключение дополнительных лампочек не увеличит 
срок работы гирлянды: ток через каждую лампочку останется 
прежним, а если перегорит одна из лампочек, то сила тока через 
вторую сразу возрастет приблизительно в два раза. Поэтому 
лампочка быстро перегорит. 
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77. На рисунке указаны предполагаемые 
знаки зарядов на обкладках конденсаторов. 
По правилу Кирхгофа 
 

IR U U
IR U U

1 1 3

2 2 3

= −
= +

⎧
⎨
⎩

,
,
 

где I U
R R

=
+

0

1 2

. 

По закону сохранения заряда  q q q2 1 3= +  или U U U2 1 3= + . 
Решение системы имеет вид 

( )U I R R3 2 13
= − ,  U IR IR2 1 2

1
3

2
3

= +  , U IR IR1 2 1
1
3

2
3

= + . 

Энергия конденсаторов, которая выделится в цепи в виде теплоты 
при отключении источника 

( )
( )

( )Q C U U U CU
R R

R R R R= + + =
+

+ +
2 3

1
2

2
2

3
2 0

2

1 2
2 1

2
2
2

1 2 . 

 
78. Первоначально ключ К замкнут , и 
ток через резистор R2  течет. Падение 
напряжения на резисторе R1  

U
r R

R1
1

1=
+
Ε  

равно удвоенному напряжению на конденсаторе C . Энергия 
заряженных конденсаторов 

W CU C U CU C R
r R

C= = = =
+

2
2

2
4 4

2

1
2 1

2 2
1

2

1
2( / )

( )
Ε  

при размыкании ключа выделяется в виде тепла на сопротивлениях 
R1  и R2 . В процессе разрядки токи, текущие через резисторы R1  и R2  
одинаковы, поэтому отношение теплот Q1  и Q2  , выделившихся на 
R1  и R2  , равно отношению сопротивлений 

Q Q R R1 2 1 2/ /= . 
С другой стороны по закону сохранения энергии: 

Q Q W1 2+ = . 
Решая совместно эти уравнения получаем искомый результат: 

Q R W R R Q R W R R1 1 1 2 2 2 1 2= + = +/ ( ), / ( ) , 
или 
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Q R
R R

C R
r R1

1

1 2

2
1

2

1
24

=
+ +

Ε
( )

,   Q R
R R

C R
R r2

2

1 2

2
1

2

14
=

+ +
Ε

( )
. 

 
79.Конденсатор заряжается до напряжения зажигания лампы  и 
затем очень быстро разряжается через лампу. Так как U U0 1>>  (где 
U0  - напряжение источника; U1  - напряжение зажигания лампы), то 
силу тока зарядки I U R1 0= /  можно считать постоянной. Тогда 
время зарядки τ = Q I1 1/ , где Q U C1 1=  -  заряд на конденсаторе 
при напряжении U1 . Для времени  зарядки получаем  

τ = RCU U1 0/ . 
 Пренебрегая временем разрядки , получим частоту вспышек 

ν τ= = ≈1 1 1 00

1

/ ,U
U RC

кГц . 

 
80. Так как проводники соединены последовательно, то сила тока 
одинакова в обоих проводниках. По закону Ома плотность тока j  
связана с напряженностью электрического поля E  соотношением 

j E=
1
ρ

,                          (1) 

из которого следует, что напряженности полей   в разных 
проводниках различны. Заряд, возникающий на границе, создает 
такое дополнительное электрическое поле, которое компенсирует 
различие в проводимостях материалов и обеспечивает постоянство 
силы тока. Пусть поверхностная плотность заряда σ, тогда в первом 
проводнике напряженность суммарного поля 

E E1 0
02

= +
σ
ε

  ,                  (2) 

а в другом 

E E2 0
02

= −
σ
ε

 ,           (3)          

 
где E0  - напряженность поля, создаваемого источником тока, а  

E' = σ
ε2 0

 - напряженность поля зарядов на границе. Из (1)-(3) легко 

найти 
σ ε ρ ρ= −j 0 1 2( ) .    (4) 

Умножая (4) на площадь поперечного сечения, получим искомый 
заряд на границе  Q I Кл= − ≈ ⋅ −ε ρ ρ0 1 2

171 5 10( ) , . 
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81. Вращающиеся заряды, находящиеся на поверхности 
проводника, представляют собой электрический ток, подобный току 
соленоида. Как известно, индукция магнитного поля в центре 
соленоида вычисляется по формуле 

B nI= µµ0 , 
где n  - число витков на единицу длины соленоида. Произведение 
nI  есть заряд, который протекает за единицу времени через 
единицу длины разреза на поверхности соленоида (поверхностная 
плотность тока). Для вращающегося цилиндра эта величина равна 
σ σωv r= . Поэтому индукция магнитного поля внутри цилиндра 

B r= µµ σ ω0 . 
 
 
82. Когда стержень раскручивается, электроны внутри стержня 
начинают смещаться к его дальнему концу, создавая тем самым 
избыточные заряды и электрическое поле внутри стержня. В 
установившемся режиме это поле будет сообщать электронам 
центростремительное ускорение. Для электрона, находящегося на 
расстоянии x  от оси вращения, согласно второму закону Ньютона 
можно записать: 

m x eEω 2 = ,     (1) 
где m  -  масса электрона.  
Откуда следует 

E m
e

x=
ω 2

.     (2) 

Напряженность электрического поля изменяется по линейному 
закону, поэтому для вычисления разности потенциалов можно 
использовать ее среднее значение (в середине стержня при 
x l L= + / 2 ).  
Тогда 

∆ϕ = = +E L m
e

l L Lav
ω 2

2( / ) .   (3) 

При наличии магнитного поля в уравнении (1) появляется новое 
слагаемое - сила Лоренца 

m x eE evBω 2 = ± .     (4) 
Знак этой силы определяется направлением вектора индукции 
магнитного поля. Чтобы напряженность электрического поля 
возросла, необходимо чтобы вектор rB  был направлен вверх. Тогда 
из (4) следует (с учетом v x= ω ) 

E m
e

B x= +( )ω ω
2

.     (5) 
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Магнитное поле, при котором разность потенциалов (а 
следовательно и напряженность) возрастает в два раза, 
удовлетворяет условию 

ω ωB m
e

=
2

 

или  
B m l= ω / .      (6) 

 
Заметим, что из-за малой массы электрона величины возникающей 
разности потенциалов крайне малы (см. задачу 11-2, Брест,1993). 
 
 
83.Так как рамка при движении испытывает сопротивление воздуха, 
то по прошествии некоторого промежутка времени она остановится 
в положении равновесия. Пусть это 
положение определяется углом α. Условие 
равновесия имеет вид 

F a m ga m g a
A b acos sin sin ,α α α= + 2

2
 

где ma  , mb  — массы сторон рамки с 
длинами a  и b , F IBlA =  — сила Ампера, 
действующая на нижнюю сторону рамки. 
Так как рамка является сверхпроводящей, 
то э.д.с. индукции, возникающая при 
движении рамки, равна э.д.с. самоиндукции 

L I
t t

∆
∆

∆Φ
∆

=  

или 

( )I
L

Bab
L

= = −
∆Φ 1 sin .α  

Здесь ∆Φ  — изменение внешнего магнитного потока через рамку. 
Учитывая, что 

( ) ( )
m m

a b
a m m

a b
ba b=

+
=

+2 2
, ,  

условие равновесия преобразуется в виду 

( )B a b
L

mga2 2 2

1
2

− =sin cos sin .α α α  

Равновесное значение угла  может быть найдено как решение этого 
уравнения. Воспользуемся слабостью магнитного поля (малостью 
угла α ), тогда sin , cosα α α≈ ≈ 1  и     
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( )2 1
2 2B ab

mL
− ≈α α , 

откуда 

α ≈
2 2 2B ab

mL
.      

 
84. Пусть контур сместился на расстояние ∆x . Силу тока в контуре 
можно найти из условия 

L I
t t

∆
∆

∆Φ
∆

= , 

откуда 

I
L

B a
L

x= =
∆Φ ∆0

2α . 

Здесь мы учли изменение потока ∆Φ ∆ ∆= =S B a B xz
2

0α . Суммарная 
сила, действующая на рамку, 

F Ia B x x B x x a B a
L

x= + − + + = −( ( ) ( ))∆ ∆ ∆0
2 2 4α

. 

Уравнение движения ( w - ускорение ) 

mw B a
L

x= − 0
2 2 4α ∆  

есть уравнение гармонических колебаний с частотой  ω α
0

0
2

=
B a

Lm
 . 

С учетом начальных условий, закон движения имеет вид 

∆x v Lm
B a

B a
Lm

t=
⎛
⎝
⎜

⎞
⎠
⎟0

0
2

0
2

α
αsin . 

 
85.Так как кольцо заряжено, то на любой участок кольца действует 
сила со стороны  электрического поля. При 
вращении кольца  к этой силе добавится  
сила Лоренца, направленная радиально, так 
же как и электростатическая сила. По 
условию задачи необходимо  определить на 
сколько увеличится сила натяжения кольца, 
поэтому можно не учитывать 
электростатическое взаимодействие. 

Рассмотрим небольшой участок кольца, видимый из его 
центра под малым углом  α . 
Сила Лоренца, действующая на него : 
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F Q RBL = 2
2

π
αω       (1) 

(здесь Q2 2α π/ - заряд участка, ωR - его скорость)  
уравновешивается  дополнительным натяжением    ∆T , проекция 
которого  на радиальное направление ∆Tα . Из условия равновесия 
: 

2
2

2∆T Q RBα
π

αω= .      (2) 

Находим  дополнительное натяжение кольца 

∆T Q RB=
2π

ω .      (3) 

Заметим, что в зависимости от направления поля B , величина  ∆T  
может  быть как положительной так и отрицательной. 
 
86. Рассмотрим рамку в момент, когда вектор индукции магнитного 
поля 

r
B t1( ) нормален к рамке (т.е. 

ориентирован вдоль вектора нормали к 
рамке rn1 . За время ∆t  рамка 
повернется на угол 

α π= 2 N t∆ . 
Кроме того, на этот же угол , но в 
другом направлении повернется вектор 

r
B   . Таким образом, угол 

между новой нормалью rn2 и новым вектором индукции 
r
B2   

( )r r
n B N t2 2 2 4, = =α π ∆ . 

Тогда значение ЭДС индукции в рамке: 

Ε ∆Φ
∆

= − = − =
t

S Nt NS nt( cos( ))' sin( )4 4 4π π π , 

а ее действующее значение 
Εeff NS= 2 2π  

(сравните с  Ε'eff NS= 2π    при вращении только рамки ). Данное 
явление (зависимость ЭДС от относительного вращения индукции 
поля и рамки) положено в основу работы электрических 
асинхронных двигателей, у которых угловые скорости рамки и поля 
не совпадают. 
 
 
87. Сила Лоренца, действующая на частицу в магнитном поле, не 
может изменить величину ее скорости. Это позволяет сразу 
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заключить, что движение частицы будет равномерным, т.е. искомый 
путь 

S vt=       (1), 
где v  - скорость частицы, t  - время ее движения. Для ответа на 
второй вопрос задачи вспомним, что в однородном магнитном поле 
траектория движения заряженной частицы окружность радиусом 

R mv
QB

P
QB

= =      (2) 

причем период обращения 

τ π π
= =

2 2R
v B

m
Q

, 

где m  - масса частицы, Q  - ее заряд, B  - величина индукции 
магнитного поля. Это значит, что переключение поля можно 
производить после целого числа оборотов частицы, тогда ее 
траектория (в виде восьмерки) и будет замкнута. Итак, 

T
B

m
Q

i=
2π , i = 1 2 3, , ... 

Рассмотрим качественно к каким последствиям может привести 
учет индуцированного  вихревого электрического поля. Согласно 
закону электромагнитной индукции вихревое электрическое поле 
r
E возникает во время переключения магнитного поля, причем 
вектор напряженности rE перпендикулярен вектору rB , то есть лежит 
в плоскости траектории частицы. Величина напряженности  E  
пропорциональна скорости изменения магнитного поля 

E C dB
dt

= , 

где C  - коэффициент, зависящий от координат точки и от 
геометрии магнитного поля. Если за время T  частица возвращается 
в исходную точку (совершив целое число оборотов), то этот 
коэффициент остается неизменным. Так как магнитное поле 
изменяется быстро , то можно пренебречь смещением частицы за 
время существования электрического поля. Тогда второй закон 
Ньютона для частицы имеет вид 

m dv
dt

C dB
dt

=  

откуда следует 

∆v
BC
m

=
2  

Таким образом, строго говоря, скорость частицы изменяется как по 
величине, так и по направлению. Однако, период обращения от 
скорости не зависит, поэтому условие замкнутости траектории 
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останется неизменным, а путь, пройденный частицей, будет 
зависеть от геометрии поля и местоположения частицы. 
88.Пусть в первичной обмотке первого трансформатора возникает 
э.д.с. ε1  , а во вторичной обмотке другого ε2  , тогда ε ε1 2 0+ =U . 
Учитывая, что ε1 1

2∝ n , а ε2 2
2∝ n , где  n  - число витков в обмотке, то 

ε
ε

1

2

2= k  . С учетом этого  

ε ε1 0 2 2 0

2

2

1
1 1

=
+

=
+

U
k

U k
k

; .   

Соответственно напряжения на вторичных обмотках:  

U
k

k
k

U U k k
k

U1 1 2 0 2 2 2 0
1

1 1
= =

+
= =

+
ε ε;  .  

Подстановка  численных значений дает результат  103,5 В. 
 
89.Из элементарных построений хода лучей следует, что ни 
размеры «зайчика», ни его положение изменяться не будут. 
Действительно, зайчик как бы формируется мнимым источником 
S' . Размеры зайчика определим 
с помощью геометрических 
построений. Пусть его диаметр 
равен x . Тогда 

x a tg a L
a

L= = ⋅ =2 2 2α , 

т.е. не зависят от расстояния a  
от источника S  до зеркала. 
 
 

90. Введем систему координат как 
показано на рисунке. Координата 
фонаря изменяется по закону 

y H vt= − .        (1)   
Из подобия треугольников можно 
записать 

x l
h

l
y h

−
=

−
/ /2 2 ,   (2)  

где x  - координата тени. Из (1)-(2) находим 

x l hl
H h vt

= +
− −2

2/ .     (3) 

Скорость движения тени можно найти как производную от 
координаты x  по времени 
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v x hl
H h vt

vx = =
− −

' /
( )

2
2     (4) 

или подставляя численные значения в системе СИ, получим 

v
tx = −

45
9 0 2 2( , )

.  (5)                

Соотношения (4)-(5) справедливы 
до тех пор, пока тень не достигла 
стены, т.е. при y h< 2 , откуда 
t H h v c< − =( ) /2 300 . При t c> 30  
, очевидно, скорость тени станет 
равной скорости опускания фонаря. 
Окончательно, требуемый график 
имеет вид, изображенный на 
рисунке.  
 
91. Для определения где остров, а где его изображение на подобных  
фотографиях, давайте восстановим оптическую схему съемки: 
объектив находится на некоторой высоте h  над поверхностью  
воды. Это обстоятельство приводит к некоторым различиям в углах 
и расстояниях на схеме. Все угловые размеры предметов 
(следовательно, и их размеры на 
фотографии) несколько больше, чем их 
изображений в воде. Из рисунка видно, 
что угол ACO несколько больше угла 
A’CO.  
Правда, отмеченные геометрические 
эффекты исчезают по мере удаления от 
острова и не могут помочь при 
идентификации картины и ее изображения, например, при съемке 
заката Солнца. В этом случае необходимо анализировать яркость, 
контрастность изображения, что довольно тяжело сделать «на глаз» 
(часть лучей при отражении преломляется и поглощается в воде). 
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92. Обозначим высоту уровня воды в зеркале 
через l . Для построения изображения 
воспользуемся двумя лучами: первый SC 
направлен перпендикулярно поверхности 
зеркала и воды; второй SA - выходит из 
источника S под малым углом α  к нормали. 
Найдем горизонтальное смещение второго луча 

AC h l= −( )α ,     (1) 

AB l l
n

= =2 2β α .     (2) 

При выводе этих соотношений учтена малость 
углов α  и β  и использован закон преломления в виде 

β α
≈

n
. 

Теперь можно найти положение изображения  S’ 

SS SC
BC

h l h l l n h l n
n

' ( ) ( ) /= + = − + − + = −
−

α
2 2 2 1 .       (3) 

Если высота уровня воды изменяется по закону l vt= , то скорость 
движения изображения v1 , как следует из (3), равна 

v v n
n1 2 1

= −
− .                           (4) 

Знак «минус» указывает, что при увеличении l  изображение 
приближается к зеркалу. 
Если высота уровня воды превышает расстояние до 
источника ( l h> ), то решение задачи изменится. В 
этом случае ход луча, выходящего под углом  α  к 
нормали, имеет иной вид. Смещение луча  ⎪CB⎪в 
этом случае 

CB h l= +α α ,      (5) 
а расстояние до изображения 

SS CS CS
CB

l h' ' ( )= − = − −
β

.   (6) 

С учетом закона преломления β α= n  получим 

SS h l
n

l h h n
n

l n
n

' = +
− + =

+
−

−1 1 .   (7) 

Скорость движения изображения 

v v n
n1

1
= −

− ,      (8) 

что в два раза меньше, чем в первом случае ( l h< ). 
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93. Условие задачи будут выполнены, если лучи попадающие на 
грань  А1А2 выйдут  через грань А4А5 (аналогично, лучи, проходящие 
через грань А1А6, выйдут через грань А3А4). Два предельных случая 
такого хода лучей показаны на рисунках. В первом случае 

показатель преломления n =
sin
sin

α
β

 может быть найден из 

геометрических соотношений. Поскольку в сечении призмы лежит 
правильный шестиугольник, то его сторона равна радиусу 
описанной окружности, т.е. А1А2 = R ,  А1А4 =2R . Легко показать, 
что угол падения α  равен π / 6 . 
Тогда из закона преломления 

sin
sin sin

α
β β
= ⇒ =n n 1

2
. 

Угол β  можно определить из 
теоремы синусов для 
треугольника А1СА4 , что 

приводят к результату tg β =
1

2 3
.  

Окончательно 

n = ≈
13
2

1 8, . 

Второй предельный случай 
реализуется при n→∞  . Следовательно, ответ задачи n > 1 8, . 
 
94. С помощью первого построения определим положение фокусов 
линзы. Из условия ясно, что S’ - это мнимое изображение. Проведем 
через точку S некоторую прямую, отличную от главной оптической 
оси. Точка  B - это точка пересечения прямой с плоскостью линзы. 
Световой луч после преломления в  точке  B пойдет таким образом, 
что его продолжение должно пройти через изображение S’. Далее, 
через оптический центр линзы  O проводим прямую параллельную 
SB. Пересечение этой прямой и прямой S’B дает положение 
побочного фокуса F’. 
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Теперь проведем второе построение, решающее задачу, а 
именно: строим прямую S1B1 параллельную SB. После преломления 
в точке B1 луч должен пройти через побочный фокус F’. Его 
пересечение с главной оптической осью (точка S1’ ) и есть 
изображение источника S1. Отметим, что из равенства (по рисунку)  
⎪OS⎪=⎪SS’⎪следует, что положение точки S’ совпадает с 
положением переднего фокуса линзы. В этом можно 
непосредственно убедиться подстановкой расстояний в формулу 
тонкой линзы. 
 

95. После шлифовки две половины можно рассматривать, как две 
линзы со сдвинутыми оптическими осями и со сдвинутыми 
оптическими центрами. Сдвиг каждого центра относительно 
исходной оптической оси 
обозначим h / 2  ( h  - 
толщина слоя, снятого при 
шлифовке). Из рисунка 
следует 

h
d

a
d f

=
+

, 

откуда 

h ad
d f

=
+

. 

Заметим, что верхнее изображение S’’ формирует нижняя часть 
линзы и наоборот. 
 
96. Сначала построением находим положение фокальных 
плоскостей обеих линз (рис.а и рис.б). Так как действия аналогичны 
опишем построение только для первой линзы. 

Проводим побочную оптическую ось O1’O1 параллельную 
падающему лучу A1B1. Преломленный луч B1F1’ должен проходить 
через побочный фокус, так же как и  побочная ось O1’O1 . 
Следовательно, их точка пересечения и есть побочный фокус F1’. 
Восстановив перпендикуляр из точки F1’, находим главный 
передний фокус F1. Для рассеивающей линзы подобным 
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построением мы найдем задний главный фокус F2. 
Совместим линзы, считая положение их фокусов 

известными. Повторяем ход лучей A1B1 и B1F1’. Луч B1F1’ падает на 
рассеивающую линзу. Строим побочную оптическую ось O2’O2. Ее 
пересечение с задней фокальной плоскостью F2F2’’ позволяет 
определить направление луча B1C, преломленного  системой двух 
линз (рис.в). 
 
97. Сразу же отметим, что изображение кольца будет разорванным, 
т.к. в системе присутствуют точки, принадлежащие фокальной 
плоскости. Дадим  «алгебраическое» решение данной задачи. 

Введм систему декартовых координат, такую, что ось X  совпадает 
с оптической осью линзы, а ось Y  лежит в плоскости линзы. 
Обозначим координаты точки A  - ( , )x y0 0  (на нашем рисунке 
x0 0< ). Найдем координаты точки-изображения  A'  - ( , )x y . Эта 
точка является точкой пересечения прямых BFA’  и AOA’  (в 
соответсвии с правилами построения изображений в тонкой линзе). 
Запищем уравнения этих прямых во введенной системе координат. 

BFA' :    y
y

x
F0

1+ = ;       AOA' :   y y
x

x= 0

0

 . (1)                                           

Решая эту систему, находим координаты точки пересечения -  

x x F
x F

y y F
x F

=
+

=
+

0

0

0

0

;

.
                         (2) 

Выразим координаты точки А через угол ϕ , определяющий ее 
положение на заданной в условии задачи окружности  

x F F y F
0 02 2
= − =cos ; sin ,ϕ ϕ  и подставим в уравнения (2). Получим 
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x F

y F

= −

=

(
cos

);

sin
cos

1 2

2

ϕ
ϕ
ϕ

                (3) 

Эти уравнения задают линию - изображение в параметрической 

форме. Эта кривая является гиперболой. При ϕ π π
→

2
3
2

;  из 

уравнений (3) можно получить  y x≈ ± −( )1 , уравнения которые 
определяют ассимптоты 
данной гиперболы.  
Предоставляем читателю 
самостоятельно найти 
соответствие между 
точками окружности и их 
изображений на 
гиперболе. 
 
                                                 
 
 
 
 
98. Изображением точки А в первой линзе является точка С, а 
изображением точки В - точка О’, то есть изображение отрезка АВ 
есть отрезок СО’. Изображение этого отрезка во второй линзе 
разобьется на два бесконечных луча (подумайте почему?): отрезок 
О’F’1 даст мнимое изображение O’F’1C и  далее до бесконечности; 
отрезок  CF’1 даст действительное изображение от точки A’ (O’A’ = 
2 F)  до бесконечности. 

 
 
99. Так как диск находится в воздухе, то мощность теплоотдачи W'  
пропорциональна разности температур поверхности диска и 
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воздуха ∆T . Пусть плотность потока энергии падающего света 
равна w0 . Тогда мощность световой энергии, попадающей на 
переднюю грань диска равна 

W r w1
2

0= π      (1) 
В установившемся режиме эта мощность равна мощности 
теплоотдачи 

W T1' = λ ∆ ,     (2) 
где λ  - коэффициент теплоотдачи. 
Из (1)-(2) следует 

∆T r w
1

2
0=

π
λ

.  (3)   

Учитывая, что фокусное расстояние 
сферического зеркала равно R / 2 , легко 
найти, что на заднюю грань диска попадает 
энергия, переносимая световым потоком 
через кольцо с внутренним радиусом r  и 
внешним 2r . 

( )( )W r r w r w2
2 2

0
2

02 3= − =π π π .  (4) 

 
В состоянии термодинамического равновесия она равна мощности 
теплоотдачи 

W T2 2' = λ ∆ .               (5) 
Следовательно, 

∆T r w
2

2
03

=
π
λ

.     (6) 

Окончательно 
∆
∆

T
T

1

2

1
3

= . 

 
100. Заряд шарика перестанет изменяться, если энергия 
вылетевшего с поверхности электрона будет меньше энергии, 
необходимой для того, чтобы электрон удалился от шарика на 
бесконечность, то есть при выполнении условия 

h A евыхν ϕ= +  , 
где ν λ= c /  - частота падающего света, A hcвых = / λ0   - работа 
выхода электрона,  λ0 - длина волны красной границы фотоэффекта, 

ϕ
πε

=
q

R4 0

 - потенциал шарика, q  - заряд шарика,h  - постоянная 
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Планка, e  - заряд электрона, c  - скорость света. Из этих 
соотношений находим 

q Rhc= −4 1 10 0πε λ λ( / / ) . 
 
101. Число фотонов, падающих на 
боковую поверхность конуса остается 
постоянным. Поэтому отношение сил 
давлений будет равно отношению 
импульсов, переданных поверхности 
конуса фотонами поглощенными и 
отраженными поверхностью. Пусть 
импульс одного фотона равен p0 , такой 
же импульс получит конус при поглощении этого фотона. Если 
фотон отражается, то горизонтальная составляющая изменения его 
импульса равна 

∆p px = −0 1 2( cos )θ  . 
Остальные проекции изменения импульса можно не учитывать, так 
как из симметрии задачи следует, что их сумма для всего 
падающего потока будет равна нулю. Таким образом отношение 
сил светового давления для зеркальной и поглощающей 
поверхностей будет равно 

η θ= = = −
P
P

p
p

зе к

погл

xр cos∆

0

1 2  

  Отметим, что при θ > 450  сила давления на зеркальную 
поверхность больше, чем на поглощающую, а приθ < 450   больше 
сила давления на поглощающую поверхность. 

 
 
 
 

 
 
 


